Стойкость к воде

Эмали стекловидные и фарфоровые. Определение стойкости к кипящей воде и водяному пару

Стандарт устанавливает метод определения стойкости плоских поверхностей стекловидных и фарфоровых эмалей к кипящей воде и(или) водяному пару.

ЭМАЛИ СТЕКЛОВИДНЫЕ И ФАРФОРОВЫЕ

Определение стойкости к кипящей воде и водяному пару

Vitreous and porcelain enamels.
Determination of resistance to boiling and water vapour

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает метод определения стойкости плоских поверхностей стекловидных и фарфоровых эмалей к кипящей воде и(или) водяному пару.

Примечание. Если испытание проводят при температуре ниже температуры кипения воды или пользуются недистиллированной водой, это должно быть указано в протоколе испытания.

Метод позволяет определять стойкость эмалей к жидкой и паровой фазам коррозионной среды.

2. ССЫЛКИ

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 29016-91 (ИСО 2733-83) Эмали стекловидные и фарфоровые. Прибор для испытаний с помощью кислот и нейтральных жидкостей и их паров

ГОСТ 29017-91 (ИСО 2723-73) Эмали стекловидные и фарфоровые для листовой стали. Изготовление образцов для испытаний

ГОСТ 29020-91 (ИСО 2742-83) Эмали стекловидные и фарфоровые. Определение стойкости к кипящей лимонной кислоте

3. СУЩНОСТЬ МЕТОДА

Каждую серию одинаково эмалированных образцов подвергают воздействию кипящей дистиллированной или деминерализованной воды в течение 48 ч (2 сут) или 336 ч (14 сут), помещая образцы в камеру с жидкостью и в паровую камеру испытательного прибора в соответствии с требованиями. Определяют потерю массы и по ней рассчитывают скорость коррозии.

Чем меньше скорость коррозии, тем выше стойкость стекловидной и фарфоровой эмали к кипящей воде или водяному пару.

4. РЕАКТИВЫ

4.1. Дистиллированная или деминерализованная вода.

Для каждого испытания требуется свежеприготовленная вода.

4.2. Уксусная кислота, раствор массовой концентрации 5 г/дм 3 для промывки испытательного прибора и образцов.

4.3. Обезжиривающий растворитель для промывки образцов, например, трихлорэтилен или ацетон.

5. АППАРАТУРА

5.1. Испытательный прибор и уплотнение В или С в соответствии с ГОСТ 29016 .

5.2. Сушильная печь, в которой можно поддерживать температуру не ниже 130 °С.

5.3. Эксикатор, например, внутренним диаметром 200 мм.

5.4. Мерный цилиндр без пробки вместимостью 500 см 3 по ГОСТ 1770 .

5.5. Химические стаканы.

5.6. Весы с погрешностью ± 0,2 мг.

6. ОБРАЗЦЫ ДЛЯ ИСПЫТАНИЯ

6.1. Предназначенные для испытания образцы должны быть специально изготовлены по стандартам на соответствующий основной металл. Образцы с эмалевым покрытием с одной стороны можно использовать только для кратковременных испытаний (48 ч).

Примечание. Методы изготовления образцов для испытания стекловидных и фарфоровых эмалей на тонколистовой стали – по ГОСТ 29017 , на чугуне – по ГОСТ 29020 .

6.2. Образцы промывают водой (п. 4.1). В случае необходимости используют подходящий обезжиривающий растворитель. Образец сушат в течение 2 ч в сушильной печи (п. 5.2) при (110 + 5) °С, затем охлаждают не менее 2 ч в эксикаторе (п. 5.3) и взвешивают с погрешностью ± 0,2 мг (первоначальная масса).

7. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

7.1. Каждое определение проводится дважды.

7.2. Закрепляют образцы в испытательном приборе (п. 5.1) так, чтобы покрытые эмалью стороны были обращены внутрь цилиндра. Равномерно завинчивают три барашковые гайки для герметизации испытательного прибора.

7.3. В горловину прибора, предназначенную для обратного холодильника, заливают 350 см 3 воды (п. 4.1), снова устанавливают холодильник и включают нагреватель.

Испытательный раствор доводят до кипения (2 – 4 пузырька в 1 с) и с помощью реостата регулируют нагрев таким образом, чтобы до завершения испытания слабое кипение раствора продолжалось. Во время слабого кипения воды записывают температуру.

7.4. Слабое кипение продолжается в течение 48 ч (2 сут). Если потеря массы образца по прошествии указанного времени составит меньше 5 мг, то для испытания берут новые образцы, которые испытывают при слабом кипении в течение 336 ч (14 сут).

Если испытание ограничивается исключительно или главным образом определением стойкости к действию только одной фазы – или жидкости или паров, это определяет время испытания (2 или 14 сут соответственно).

7.5. После слабого кипения в течение 48 ч (или 336 ч) выливают воду из цилиндра, охлаждают его и промывают водой.

Образцы вынимают из испытательного прибора и обтирают их три раза губкой (п. 5.7) и уксусной кислотой комнатной температуры, затем промывают водой.

После тщательного удаления остатков уплотнения с краев образцы сушат в течение 2 ч в сушильной печи (п. 5.2) при (110 + 5) °С. Затем образцы охлаждают в эксикаторе в течение по крайней мере 2 ч (п. 5.3) и снова взвешивают с погрешностью ± 0,2 мг (конечная масса).

8. ОБРАБОТКА РЕЗУЛЬТАТОВ

8.1. Площадь, подвергаемая действию воды или водяного пара, должна быть равна 50 см 2 . Если потеря массы D m (разность первоначальной и конечной масс) выражается в миллиграммах, то скорость коррозии (vK(2)) при времени испытания 48 ч (2 сут) в граммах на 1 м 2 в сутки (г/м 2 сут) вычисляют по формуле

При времени испытания 336 ч (14 сут) скорость коррозии (vK(14)) в г/м 2 сут вычисляют по формуле

8.2. Результаты испытаний, полученные для образцов, помещенных в камеру с жидкостью и в паровую камеру испытательного прибора, записывают отдельно. Поскольку определение состоит из двух параллельных испытаний (два для одного и два для другого), находят среднеарифметическое этих значений.

Разница между минимальным и максимальным значениями скорости коррозии, рассчитанная по среднеарифметическому значений, должна быть не более 30 %. В противном случае необходимо проводить дальнейшее испытание, по результатам которого рассчитать среднеарифметическое значение.

Результаты испытания образцов, имеющих дефекты, например, мелкие отверстия до металла, отколовшиеся края или кромочную коррозию, отбрасывают и подвергают испытанию соответствующее число новых образцов.

9 . ПРОТОКОЛ ИСПЫТАНИЯ

Протокол испытания должен содержать следующие данные:

a) ссылку на настоящий стандарт;

b) обозначение испытуемой стекловидной эмали;

c) температуру испытания в градусах Цельсия;

d ) время слабого кипения в сутках;

e) отдельные значения и среднеарифметические значения скорости коррозии vK(2) или vK(14), округленные до второго десятичного знака, отдельно для паровой и жидкой фаз.

1. ПОДГОТОВЛЕН И ВНЕСЕН Министерством металлургии СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 28.05.91 № 750

Стандарт подготовлен методом прямого применения международного стандарта ИСО 2744-83 «Эмали стекловидные и фарфоровые. Определение стойкости к кипящей воде и водяному пару» и полностью ему соответствует

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение отечественного нормативно-технического
документа, на который дана ссылка

Обозначение
соответствующего стандарта

Всё о стойкости ароматов: Сколько должен держаться парфюм на теле?

Вопрос стойкости один из самых популярных у покупателей парфюмерии. Но для парфюмеров этот вопрос не определяющий. Ведь нельзя назвать повара лучшим только из-за того, что он готовит самые калорийные блюда, так и в парфюмерии, лучший парфюмер определяется не исходя из стойкости аромата.

Прежде чем изучать вопрос стойкости рекомендуем ознакомиться с видео от Гуру Элины Арсеньевой:

Классификация духов по стойкости

Стойкость зависит от типов используемой парфюмерии. Рассмотрим основные типы:

  • Духи (Extrait) – самый стойкий и дорогой тип парфюмерии. Концентрация эфирных масел от 20% и более, растворенных в почти чистом спирте (96 %). Стойкость около 6 часов
  • Парфюмерная вода (EDP) – самый популярный тип парфюмерии. Концентрация порядка 10%. Стойкость около 4 часов.
  • Туалетная вода (EDT) – легкий вид парфюма. Концентрация около 4-5%. Можно пользоваться несколько раз в день. Идеально для летнего времени. Стойкость 2-3 часа.
  • Дезодорант (DEO) – Концентрация 1-2%. Стойкость не более часа.
  • Одеколон (EDC) – Менее 1%. Стойкость менее часа.

Стойкость подделок и оригиналов парфюма

Среди покупателей ходит устоявшийся миф, что оригиналы отличаются от подделок стойкостью. Это далеко не так!

Оригинал отличается от подделки в первую очередь звучанием аромата, стойкость тут не при чем! Это самая популярная уловка тех, кто продает подделки.

Первое, что Вы услышите про подделку: “Реплика – это такой же аромат, но стойкость у него 4 часа, вместо 8 часов как у оригинала”. Это далеко не так! Подделки раскрываются одной единственной нотой, без начала, интриги и кульминации. Они не изменяются в течении дня, что нельзя сказать про качественный оригинальный аромат.

Не нужно путать звучание аромата со стойкостью.

От чего же зависит стойкость оригинального аромата?

1. Длительная встряска и внешнее воздействие

Во время перевозки парфюм может находиться на солнце или переноситься в хородную погоду. А ароматы рекомендуют хранить в сухом темном месте и не подвергать их длительным встряскам. Поэтому сразу после получения парфюмерии, особенно при отправках по России, необходимо поставить духи в темное прохладное место и дать составу “прийти в форму” 1-2 дня. Особенно в летнее и зимнее время, когда перепады температур очень существенны. Как минимум, парфюм должен набрать комнатную температуру, только после этого его можно распылять.

Те, кто увлекается винтажной парфюмерией не понаслышке, знают об этом важном факте. Есть специальные холодильники, в которые помещают винтажные ароматы на 2-3 недели, чтобы они набрали нужную форму.

2. Химия Вашей кожи

Люди уникальны не только внешне: химический состав и процессы, которые происходят внутри каждого человека – уникальны. Это влияет конечно же и на нашу кожу, а именно на температуру, кислотность и жирность.

В парфюмерном мире выделяют 2 вида кожи: “холодная” и “горячая”.

  • С “горячей кожи” ароматы проявляются ярче и богаче, но, чем ярче аромат, тем быстрее он выветривается, а значит стойкость меньше. Чаще такой тип кожи у людей, которые любят открывать окно и очень чувствительны к духоте в помещении.
  • С “холодной кожи” духи выветриваются дольше, но и раскрываются менее ярко. Чаще такой тип кожи у людей-мерзляков – им всегда холодно, они чувствительны к сквознякам. Это те люди, которые закрывают окна и выключают кондиционер.

Есть небольшая хитрость в определении Вашего типа кожи. Это дешевые пластиковые кольца, которые определяют Ваше настроение. Они устроены так, что в зависимости от температуры Вашей кожи они окрашиваются в разные цвета. Чем темнее кольцо, тем более холодная у Вас кожа.

3. Окружающая среда и внешние факторы могут увеличить или уменьшить стойкость аромата

Солнце, мороз и влажность. Чем агрессивнее внешняя среда, тем быстрее выветривается аромат. Некоторые покупатели считают, что зимой аромат выветривается медленне (холод помогает его сдерживать). Это не так. Вызвано это тем фактом, что зимой люди одеваются теплее, при движении выделяется в разы больше тепла, аккумулируемого под Вашей одеждой.

Обратите внимание, как раскрывается аромат в дождь, солнце, мороз или просто комфортный облачный день. Стойкость будет разной.

4. Разные партии изготовления аромата

Особенно, если речь идет о натуральных ингридиентах, которые свойственны дорогим парфюмам. Одинаковым и 99% сходством аромата будут обладать ароматы только из 1 партии.

Почему это так? Внешние условия окружающей среды разные. Жасмин, собранный в 2013 году будет отличаться от жасмина в 2016 году, потому как обильность осадков, средняя температура и тысячи других факторов были абсолютно другими. Ровно как жасмин, выращенный в диких условиях, будет отличаться от жасмина, выращенного в селекционных условиях.

Сейчас массмаркет парфюмерию переводят на искусственные заменители ароматических экстрактов. Да, это приводит к предсказуемости аромата и унифицированному качеству, но, по-мнению профессиональных парфюмеров, это приводит к потере волшебства и индивидуальности аромата. Поэтому, покупая парфюм из натуральных ингридиентов, будьте готовы к тому, что понравившийся аромат в новом исполнении может раскрыться абсолютно иначе на Вашей коже, чем Ваш старый флакон, купленный ранее.

Затем партия, изготовленная из одного набора ингридиентов, помечается батч-кодом. Следующая партия уже может быть произведена из других ингридиентов, другого года и другого качества. Единственный способ получить одинаковое качество – это купить парфюм из одной партии.

5. Нарушены условия хранения

К сожалению, практически ни один интернет-магазин не в состоянии на 100% проконтролировать условия хранения товара у поставщика, т.к. поставщик гарантирует идеальные условия хранения лишь юридически, договором. Как это происходит на практике, не известно. Магазины проверяют товар лишь при приемке, по косвенным признакам: выгоревшая упаковка или цвет печати. Других методов проверки, к сожалению, нет.

Именно поэтому у нашего магазина есть гарантия на возврат для наших клиентов. Ведь для того, чтобы предъявить поставщику претензию, магазину нужны юридические основания на то, что парфюм некачественный. Без вещественных доказательств – это невозможно. Ведь перед продажей мы не можем вскрыть упаковку и проверить его качество, в этом случае Вы получите непривлекательный товар.

В случае наличия проблем наш магазин изучает поведение поставщика, если он принимает меры, мы продолжаем сотрудничество с ним, если поставщик не решает проблемы с качеством, сотрудничество мы прекращаем.

6. Ухудшение качества на производстве

Это относится в большей мере к массмаркет парфюмерии, которую производят в первую очередь ради заработка. Как только аромат набирает свою популярность, производители ищут более дешевое сырье, сокращая себестоимость производства. Тут, к сожалению, ритейлеры бессильны, т.к. мы лишь перепродаем парфюмерию и на производство влиять не можем.

Единственная действенная мера – это прекращать покупать аромат после снижения его качества. Только голосование кошельком, помогает исправлять качество любого аромата. Так как нет лучшего тонуса для производителя, как снижение продаж. Перед покупкой любого парфюма рекомендуем изучать отзывы на парфюмерных форумах даже на ароматы, которые Вы знаете “от и до”.

7. Усталость от аромата

Если Вы длительное время пользуетесь одним и тем же ароматом Ваше обоняние привыкает к нему настолько, что Вы перестаете его ощущать на себе. В этом случае лучше прекратить пользоваться ароматом на 2-3 недели и вернуться к нему потом. Либо попросите кого-нибудь из Вашего окружения описать их ощущения от аромата на Вас.

Но лучше не просить тех, с кем Вы живете в 1 квартире и видитесь ежедневно, т.к. у них тоже могло возникнуть привыкание к Вашему аромату.

Это очень опасно, т.к. Вы можете начать перебарщивать с количеством парфюма. Вы не будете чувствовать ничего, а окружающие будут сходить с ума и могут даже прокашливаться. Редко кто может в этом сознаться, чаще окружающие просто терпят и смотрят искоса.

Как определить стойкость духов в домашних условиях?

Как Вы поняли, стойкость аромата в повседневной жизни замерять некорректно, т.к. не бывает 2-х одинаковых дней. Если Вы хотите сравнить стойкость парфюмерии в Вашей коллекции, то можно сделать это следующим образом:

  • Возьмите чистый листок А4;
  • Нанесите на каждую полоску название парфюма;
  • Распылите ваши духи на полоску;
  • Зафиксируйте время распыления на листочке;
  • С определенной периодичностью, например, раз в 20 минут, проставляйте галочки на полоске до того момента, пока аромат не погаснет полностью;
  • Сколько галочек набрал парфюм – умножьте на периодичность проверки. Например, 30 галочек с периодичностью раз в 20 минут означает, что стойкость аромата 600 минут или 10 часов.

Какие стойкие ароматы купить?

В нашем интернет-магазине парфюмерии Вы можете подобрать парфюмерию по стойкости. Данные основаны на голосовании пользователей самого крупного парфюмерного форума fragrantica.ru.

Для перехода к каталогу выберите категорию:

Методы испытания ВОК на стойкость к воздействию внешних факторов

Методы испытания ОК на стойкость к воздействию внешних факторов приведены в табл.5.5.

Испытание ВОК на стойкость к циклическому изменению температуры (в соответствии с МЭК 60794-1-2, метод F1 и ГОСТ 20.57.406 — 81 [17, 11]).

Графики зависимости температуры от продолжительности испытания на стойкость ОК к циклическому изменению температуры приведены на рис. 5.30 и 5.31.

Таблица 5.5. Методы испытания ОК на стойкость к воздействию внешних факторов

Обозначение:ГОСТ 29022-91
Название рус.:Эмали стекловидные и фарфоровые. Определение стойкости к кипящей воде и водяному пару
Статус:действует
Дата актуализации текста:05.05.2017
Дата добавления в базу:01.09.2013
Дата введения в действие:01.01.1992
Утвержден:28.05.1991 Госстандарт России (Russian Federation Gosstandart 750)
Ссылки для скачивания:
Название испытанияМетод испытания
Стойкость к циклическому изменению температурыМЭК 60794-1-2-F l, ГОСТ 20.57.406
Стойкость к повышенной рабочей температуреМЭК 60068-2-2, ГОСТ 20.57.406
Стойкость к пониженной рабочей температуреМЭК 60068-2-1, ГОСТ 20.57.406
Стойкость к проникновению водыМЭК 60794-1-2-F5A, МЭК 60794-1-2-F5B
Стойкость к распространению горенияМЭК 60332-1, ГОСТ 12176
Стойкость к воздействию солнечной радиацииМЭК 60068-2-5, ГОСТ 20.57.406
Стойкость к воздействию соляного туманаМЭК60068-2-11,ГОСТ 20.57.406

Рис. 5.30. График стандартного цикла изменения температуры:

Та-минимальная температура; Тв-максимальная температура;

А-начало цикла; t1-время выдержки в камере

Рис. 5.31. График комбинированного цикла изменения температуры:

Та1, Та2 — минимальная температура на шагах 1 и 2;

Тв1, Тв2 — максимальная температура на шагах 3 и 4;

А — начало цикла; t1 — время выдержки в камере

Если в технической документации на кабели конкретных марок указан различный диапазон температур для хранения и эксплуатации, допускается проведение комбинированного испытания вместо двух различных испытаний (рис. 5.31).

Испытанию подвергается образец кабеля длиной, которая обеспечивает необходимую точность измерения (не менее 1000 м). Образец должен быть намотан на барабан таким образом, чтобы не ухудшились характеристики.

Термокамера должна обеспечивать заданную температуру с точностью не меньше плюс 3 о С. Образец подвергается воздействию трех циклов. Цикл включает выдержку при нижней температуре Та, а затем выдержку при верхней температуре Тв. Время выдержки при заданных температурах — 4 часа, время перехода между граничными температурами — 2 часа.

После окончания третьего цикла образец выдерживается в нормальных условиях не менее 8 часов.

До испытания и после выдержки образца при каждой из заданных температур в ОВ измеряется затухание. Образец считается выдержавшим испытание, если приращение затухания оптического сигнала в ОВ во время испытания не превышает 0,2 дБ/км для одномодового ОВ, и 0,4 дБ/км для многомодового ОВ, после прекращения действия температуры 0,02 дБ/км для одномодового ОВ и 0,1 дБ/км для многомодового ОВ.

Примечания: 1. Границы циклического изменения температуры от минус 40 о С до плюс 60 о С (для ОК, предназначенных для наружной прокладки). 2. Границы циклического изменения температуры от минус 15 о С до плюс 60 о С (для ОК, предназначенных для внутренней прокладки).

Испытание на действие повышенной рабочей температуры среды (в соответствии с МЭК 60068-2, метод 2, ГОСТ 20.57.406 [27, 11]).

Испытание проводят с целью проверки параметров и сохранения внешнего вида ОК после действия повышенной рабочей температуры.

Согласно МЭК 60068-2. метод 2 испытания ОК проводят в камере тепла, которая должна обеспечивать режим повышенной рабочей температуры. В камере тепла должна быть обеспечена свободная циркуляция воздуха между образцом ОК и поверхностью стенок камеры. Отклонение температуры от установленного значения в технической документации на ОК не должно превышать плюс 3 о С. Отрезок ОК (не менее 1000 м) выдерживают при заданной температуре не менее 16 час. До испытания и в конце выдержки при повышенной температуре образца ОК проводится измерение затухания ОВ.

Образец считается выдержавшим испытание, если приращение затухания оптического сигнала в ОВ во время испытания не превышает 0,2 дБ/км для одномодового ОВ и 0,4 дБ/км для многомодового ОВ, после прекращения действия температуры — 0,02 дБ/км для одномодового ОВ и 0,1 дБ/км для многомодового ОВ.

Испытание на действие пониженной рабочей температуры среды (в соответствии с МЭК 60068-2, метод 1, ГОСТ 20.57.406 [27, 11]).

Испытание проводится с целью проверки параметров и сохранения внешнего вида ОК после действия пониженной рабочей температуры.

Согласно МЭК 60068-2, метод 1 испытания ОК проводятся в камере холода, которая должна обеспечивать режим пониженной рабочей температуры. В камере холода должна быть обеспечена свободная циркуляция воздуха между образцом ОК и поверхностью стенок камеры. Отклонение температуры от установленного значения в технической документации на ОК не должно превышать плюс 3 о С. Отрезок ОК (не менее 1000 м) выдерживают при заданной температуре не менее 16 час. До испытания и в конце выдержки при пониженной температуре образца ОК измеряют затухание ОВ.

Образец считается выдержавшим испытание, если приращение затухания оптического сигнала в ОВ во время испытания не превышает 0,2 дБ/км для одномодового ОВ, и 0,4 дБ/км для многомодового ОВ, после прекращения действия температуры — 0,02 дБ/км для одномодового ОВ и 0,1 дБ/км для многомодового ОВ.

Испытание ВОК на стойкость к проникновению воды (в соответствии с МЭК 60794-1-2, методы F5A(B) [17]).

Метод F5A. Схема испытания данным методом F5A приведена на рис. 5.32.

Рис. 5.32. Схема испытания на стойкость к проникновению воды, метод F5A:

1 — колпачок; 2- столб воды 1 м; 3 — образец кабеля

На образце ОК, предназначенном для испытания, на длине не менее 3 м от конца должны быть вырезаны по всему периметру на длине 25 мм защитные покровы и покровы поверх скрученного сердечника.

Поверх скрученного сердечника должна быть установлена водонепроницаемая муфта так, чтобы перекрывался вырез защитных покрытий и предупреждалось распространение воды между сердечником и другими элементами конструкции кабеля.

Образец размещается горизонтально. Участок образца ОК, который был подготовлен для испытания, подвергается действию водяного столба высотой 1 м на протяжении 24 час при температуре (20±5) о С.

Метод F5B. Схема испытания данным методом приведена на рис. 5.33.

Образец ОК длиной 3 м должен быть присоединен одним концом к испытательному устройству. Присоединение должно быть выполнено так, чтобы был свободный доступ воды из сосуда только в середину сердечника. Затем испытательное устройство должно быть наполнено водой. В таком состоянии образец ОК подвергается действию водяного столба высотой 1 м на протяжении 24 час при температуре (20±5) о С.

Образец ОК считается выдержавшим испытание, если на свободном конце ОК не обнаружено просачивания воды.

Рис. 5.33. Схема испытания на стойкость к проникновению воды, метод F5B:

1 — столб воды 1 м; 2- уплотнитель; 3 — образец кабеля

Примечание. Кабель не должен рассматриваться не выдержавшим испытания, если вне сердечника кабеля и его изоляции обнаружено случайное просачивание.

Испытание ОК на стойкость к распространению горения (в соответствии с МЭК 60332-1, ГОСТ 12176[28, 29]).

Испытания проводятся в камере при температуре окружающей среды от 15 о С до 35 о С,относительной влажности (45 — 75)%. Испытательная камера должна быть длиной (450±25)мм, шириной (300±25)мм и высотой (1200±25)мм без передней стенки. Все стенки камеры должны быть изготовлены из металла, а дно защищено прослойкой асбеста или другого теплозащитного материала (рис. 5.34).

Образец ОК длиной (60Ы25) мм закрепляют вертикально в середине камеры так, чтобы его нижний конец находился на расстоянии около 50 мм от дна камеры.

При испытании кабеля с наружным диаметром до 50 мм используют одну горелку, более 50 мм — две. В случае использования натурального газа длина пламени должна быть около 125 мм, длина внутренней синей части около 40 мм.

В случае использования пропана длина пламени должна быть около 175 мм, длина внутренней синей части около 55 мм.

Пламя горелки подводят к образцу на расстоянии около 75 мм выше нижнего зажима, так чтобы ось сопла горелки составляла с осью образца ОК угол 45 о . Внутренняя синеватая часть пламени должна находиться на расстоянии около 10 мм от образца ОК.

Пламя должно действовать на образец кабеля на протяжении времени Т в секундах и рассчитывается по формуле:

(5.9)

где М — масса образца длиной 600 мм, г.

Образец ОК считается выдержавшим испытание, если после удаления горелки пламя затухает, а после удаления с поверхности образца копоти не будут обнаружены обугливания или повреждения на расстоянии менее 50 мм от нижнего края верхнего зажима. Время затухания пламени не регламентируется.

Испытание ВОК на стойкость к воздействию солнечной радиации (в соответствии с МЭК 60068-2, метод 5, ГОСТ 20.57.406 [27, 11]).

Испытания проводят с целью проверки сохранения внешнего вида и передаточных характеристик ОК после воздействия солнечной радиации.

Испытания проводят в камере солнечной радиации, которая должна обеспечить режим облучения. Влажность камеры не задают и не контролируют. Режим облучения в камере солнечной радиации должен быть следующим:

• интегральная поверхностная плотность потока излучения должна быть равной 1120Вт/м 2 ±10%;

• поверхностная плотность потока ультрафиолетовой части спектра должна быть равной 68 Вт/м 2 ±10%;

• спектральный раздел излучения должен соответствовать значениям, указанным в табл.5.6.

Образцы ОК подвергаются действию солнечной радиации циклично. Продолжительность цикла:

• режим А: 24 часа, из них 8 часов облучение при температуре в камере солнечной радиации (40±2) о С и 16 час при отсутствии облучения при температуре в камере солнечной радиации (25±2) о С.

• режим Б: 24 часа, из них 20 часов облучение при температуре в камере солнечной радиации (55±2) о С и 4 часа в отсутствие облучения при температуре в камере солнечной радиации (25±2) о С.

Графики режимов А и Б приведены на рис. 5.35.

Таблица 5.6. Спектральное распределение излучения

Характеристика излученияУльтра-фиолетовая область спектра Б*Ультра- фиолетовая область спектра АВидимая область спектраИнфра- красная область спектра
Ширина полосы, мкмот 0,28 до 0,32от 0,32 до 0,40от 0,40 до 0,52от 0,52 до 0,64от 0,64 о 0,78от 0,78 до 3,0
Поверхностная плотность потока излучения, Вт/м 2
Допустимое отклонение поверхностной плотности потока излучения, %±35±25±10±10±10±20

* ) Ультрафиолетовое излучение, длина волны которого меньше 0,30 мкм, почти полностью ослабляется атмосферой земли

Рис. 5.35. Графики режимов А и Б при испытании ОК на стойкость к воздействию солнечного излучения

Образцы ОК достают из камеры, проводят визуальный осмотр в соответствии ГОСТ 12177, ГОСТ 26792, МЭК 60811-1, метод 1. Проводят контроль механических и передаточных характеристик [21, 22, 20].

Испытание ВОК на стойкость к воздействию соляного тумана (в соответствии с МЭК 60068-2, метод 11, ГОСТ 20.57.406 [27, 11]).

Испытания проводят с целью определения коррозийной стойкости ОК и их пригодности к эксплуатации во влажной атмосфере в присутствии солей.

Согласно МЭК 60068-2, метод 11 испытания должны проводиться методом выдержки образца ОК в соляном тумане с распылением соляного раствора и последующей промывкой, просушиванием и выдержкой в НУ.

Испытания ОК на стойкость к воздействию соляного тумана должно проводиться в камере соляного тумана, которая должна удовлетворять следующим требованиям:

• конструкция камеры должна создавать в ней однородные условия и давать возможность соляному туману свободно циркулировать около отрезка ОК;

• соляной раствор должен распыляться при помощи аэрозольного аппарата.

Соляной раствор получают путем растворения хлористого натрия в дистиллированной воде. Водородный показатель (рН) раствора должен быть в пределах 6,5 — 7,2 при температуре (35±2) о С. Показатель (рН) при необходимости должен корректироваться до заданного значения при помощи соляной кислоты или гидроксида натрия. Концентрация соляного раствора должна быть (5±1)% по весу (5 весовых частей соли растворяют в 95 весовых частях дистиллированной воды).

Камера соляного тумана и ее вспомогательные части должны быть изготовлены из материалов, которые не будут влиять на результаты испытаний. Аэрозоль не должна попадать непосредственно на изделие. Конденсат должен удаляться из рабочего объема камеры и не использоваться повторно, для чего на дне камеры соляного тумана должен быть сток.

Не допускается стекание конденсата на отрезки ОК.

Отрезки ОК перед испытанием выдерживаются в НУ. Проводят визуальный осмотр и измеряют параметры.

Отрезки ОК размещают в камере соляного тумана. Температуру в камере устанавливают (35±2) о С и подвергают воздействию соляного тумана. Соляной туман должен иметь такую дисперсность и водность, чтобы объем конденсата, усредненный за время работы на протяжении не менее 16 часов, составлял от 1 мл до 2 мл в час на каждые 80 см горизонтальной поверхности испытательного пространства. Распыление раствора проводят на протяжении 15 мин через каждые 45 мин воздействия. Общее время испытания должно составлять 16 час, 48 час, 96 час, 168 час, 336 час, 672 час.

После проведения испытания образец ОК вынимают из камеры, промывают 5 мин под струей воды, высушивают и выдерживают на протяжении 2 часов при НУ. Проводят визуальный осмотр изделия в соответствии с требованиями ГОСТ 12177, ГОСТ 26792, МЭК 60811-1-1 [21, 22, 20], а также контроль механических и передаточных характеристик.

|следующая лекция ==>
Методы испытания ВОК на стойкость к механическим воздействиям|Строительство и монтаж волоконно-оптических линий связи

Дата добавления: 2018-09-25 ; просмотров: 804 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Стойкость к воде

ЗАЩИТА ОТ КОРРОЗИИ конструкционных материалов в агрессивных средах основана на: 1) повышении коррозионной стойкости самого материала; 2) снижении агрессивности среды; 3) предотвращении контакта материала со средой с помощью изолирующего покрытия; 4) регулировании электродного потенциала защищаемого изделия в данной среде.
Методы повышения коррозионной стойкости. Из всех конструкц. материалов наиб. стойкостью к коррозии характеризуются пластмассы, керамика, стекло, резина, асбест и бетон. Однако по мн. др. эксплуатац. св-вам эти материалы не могут конкурировать с металлами. Обладающие высокой стойкостью благородные металлы слишком дороги для использования в качестве осн. конструкц. материалов совр. техники. Наиб. доступный металл – железо, обладает требуемым комплексом физ. св-в, но низкой стойкостью к коррозии. Для повышения последней без ухудшения мех. характеристик Fe легируют др. металлами, напр., хромом. При легировании значит. кол-вом хрома, а иногда и никелем получают нержавеющие стали. Наиб. стойкостью к равномерной коррозии обладают аустенитные стали, если имеются условия для поддержания их в пассивном состоянии (см. Пассивность металлов ). Аустенитные стали устойчивы к воздействию воздуха, р-ров азотной и мн. орг. к-т, серной к-ты в нек-ром интервале концентраций, сернистой к-ты и щелочей. Однако в др. средах они подвержены питтинговой, щелевой и межкристаллитной коррозии, а также коррозионному растрескиванию. Важными коррозионностойкими материалами являются также Ni, Al, Cu, Ti и сплавы на их основе. Никель устойчив к воздействию горячих и холодных щелочей, разбавленных неокисляющих орг. и неорг. к-т, а также воздушной атмосферы. Легирование медью повышает его стойкость к коррозии в восстановит. средах, а также к питтинговой коррозии в морской воде. Легирование хромом повышает сопротивление воздействию окислит. сред, а молибденом -восстановительных; одновременное легирование хромом и молибденом – воздействию тех и других сред. Алюминий обладает хорошей стойкостью к коррозии в атм. условиях, в р-рах уксусной и азотной к-т, парах S, SО 2 и др. Легируют Аl небольшими кол-вами др. металлов, гл. обр. для улучшения его мех. характеристик. Медь устойчива к воздействию воздуха, морской и пресной (горячей и холодной) воды, деаэрир. р-ров неокисляющих к-т. Сплавы Сu с Аl (алюминиевая бронза) и Ni (купроникель) используют для изготовления конденсаторных труб, а алюминиевую бронзу – также для корпусов насосов и корабельных гребных винтов. Титан и его сплавы обладают высокой коррозионной стойкостью в морской воде, воздухе, загрязненном пром. выбросами, в ряде агрессивных хим. сред (см. также Коррозионностойкие материалы ). В практике 3. от к. широко применяют поверхностное легирование недорогих сплавов, имеющих хорошие мех. характеристики. Поверхностный слой обычной стали можно превратить в сплав с высокой коррозионной стойкостью путем нагрева в порошкообразной шихте, содержащей Zn (диффузионное цинкование), Аl (алитирование) или Сr (хромирование), иногда со спец. активирующими добавками. Можно также плакировать дешевый малостойкий материал тонким слоем более коррозионностойкого, напр., путем совместной горячей прокатки двух листов до нужной толщины образующегося “биметалла”. Пов-сть изделий модифицируют путем нанесения тонких покрытий из др. металлов или сплавов, преим. для защиты от атм. коррозии. Состав и способ нанесения покрытий м. б. различными. На стальной прокат покрытия из Zn, Al и их сплавов чаще всего наносят методом напыления: металл покрытия в виде проволоки или порошка плавится в электрич. дуге или пламени, распыляется газовой струей и осаждается на подготовленную пов-сть. Хорошей адгезией и равномерной толщиной отличаются покрытия, образуемые окунанием защищаемых изделий в ванну расплавленного Zn или Аl. Электрохим. методы нанесения широко используют в тех случаях, когда необходимо покрытие очень малой и контролируемой толщины, а изделие не должно сильно нагреваться. Так наносят Cr, Ni, Sn, Zn, Cd и др. (см. Гальванотехника ) . Хромовые покрытия декоративны и благодаря высокой способности хрома пассивироваться могут обладать высокой защитной способностью, но, как правило, содержат трещины и потому чаще их наносят поверх никелевых покрытий.
Методы снижения коррозионной активности среды. Наиб. распространенные агрессивные среды – вода, водные р-ры к-т и щелочей, атмосфера, почва. Агрессивность водных сред зависит от растворенных в них О 2 и СО 2 , удаление к-рых является одним из методов борьбы с коррозией железа, стали, меди, латуни, цинка, свинца. Физ. удаление О 2 и СО 2 достигается нагревом воды при пониж. давлении или продувкой инертным газом, химическое – пропусканием через слой железных или стальных стружек, обработкой восстановителем (сульфатом натрия, гидразином). В энергетике и нек-рых отраслях техники воду освобождают также от стимуляторов локальной коррозии, напр., хлоридов. Эффективно снижают агрессивность водных сред небольшие добавки (редко более 1%) ингибиторов коррозии , защитное действие к-рых обусловлено образованием прочно связанных с пов-стью нерастворимых продуктов коррозии. Обычно применяют анодные ингибиторы гидроксид, карбонат, силикат, борат, фосфаты, нитрит и бензоат натрия и катодные (сульфаты цинка, бикарбонат натрия и нек-рые др.). Анодные ингибиторы в недостаточной концентрации вызывают питтинговую коррозию . Они более эффективны в смеси с катодными ингибиторами, причем совместное действие часто превосходит сумму отдельных эффектов. В кислых средах используют специфические, гл. обр. орг. ингибиторы. Особый класс составляют ингибиторы-пассиваторы, переводящие металл в пассивное состояние посредством смещения его электродного потенциала в более положит. область. Это окислители, чаще пероксидного типа, а также соед. благородных металлов, обменное осаждение к-рых на защищаемом металле способствует достижению потенциала пассивации. Агрессивность атмосферы сильно зависит от ее влажности и от того, является ли район промышленным, сельским, морским и т. п. (см. Атмосферная коррозия ). Для любого металла в зависимости от гигроскопичности продуктов его коррозии и пылевых частиц, попадающих на пов-сть, имеется нек-рая критич. относит влажность, ниже к-рой он не подвергается атм. коррозии; для Fe, Cu, Ni, Zn она находится в пределах от 50 до 70%. Поэтому в открытой атмосфере целесообразна периодич. очистка пов-сти изделия от гигроскопич. загрязнений. Гигроскопичность продуктов коррозии стали уменьшают легированием медью в небольших кол-вах. Для изделий, имеющих историч. ценность, т-ру их хранения иногда искусственно поддерживают несколько выше точки росы. В полостях и упаковках ценных изделий пониж. относит. влажность поддерживают с помощью поглотителей влаги. Весьма эффективны также летучие ингибиторы коррозии, напр., карбонат или нитрат циклогексиламина, к-рые, медленно испаряясь, осаждаются на защищаемой пов-сти с образованием независимой адсорбц. пленки. Однако, защищая сталь, такие ингибиторы могут усиливать коррозию др. металлов. Поэтому для 3. от к. изделий, включающих разл. металлы, необходимы спец. составы. Распространены упаковочные материалы (бумага, картон, пленка), содержащие подходящий ингибитор коррозии. Агрессивность пром. атмосферы определяется в осн. продуктами сгорания топлив и др. выбросами (SO 2 , CO 2 , H 2 S, NO 2 , NH 3 , сажа, взвеси солей). Из них главным стимулятором коррозии является SO 2 , превращающийся на пов-сти металла во влажной атмосфере в серную к-ту. В закрытых объемах стимуляторами коррозии оказываются пары орг. к-т (муравьиной, уксусной, пропионовой), выделяющиеся из нек-рых сортов древесины, пластмасс, клеев, красок. Единственный путь снижения агрессивности пром. атмосферы – устранение выбросов, в помещениях кондиционирование и фильтрация поступающего воздуха. Коррозионная агрессивность почвы определяется содержанием в ней О 2 , влажностью, электрич. проводимостью, рН (см. Подземная коррозия ). В кислых почвах куски извести вблизи зарытого в почву металла могут долго создавать рН, достаточный для поддержания металла в пассивном состоянии.
Защитные изолирующие покрытия. Из орг. изолирующих покрытий для защиты от атм. коррозии широко используют лакокрасочные, для подземных конструкций – толстые покрытия из кам.-уг. пека, битумов, полиэтилена, сочетаемые с катодной электрохим. защитой. Для улучшения адгезии производится подготовка пов-сти под покрытие: тщательная (мех. или хим.) очистка от грязи и продуктов коррозии, специальная хим. или электрохим. обработка (фосфатирование, хроматирование, анодирование). Сплошность повышают использованием многослойных (обычно трехслойных) покрытий. От первого (грунтовочного) слоя требуется макс. адгезия к металлу и хорошие защитные характеристики, достигаемые введением пигментов с ингибирующими св-вами (свинцовый сурик, хромат цинка). Конечная толщина покрытия обычно не превышает 0,75 мм. Применение вместо натуральных масел совр. синтетич. материалов позволяет увеличить срок службы покрытия в 3-5 раз. Нек-рые пластмассы, напр., эпоксидные и полиуретановые смолы, надежно защищают металл в виде тонких покрытий; другие (поливинилхлорид, полиэфиры, нек-рые фторзамещенные полиолефины, полиэтилен) используются в виде относительно толстых покрытий. Толстые и особенно армированные покрытия можно рассматривать как коррозионностойкую футеровку. Среди неорг. защитных покрытий важными являются стекловидные эмали, используемые преим. для защиты чугунных и стальных изделий (резервуары, ванны, бытовая техника) от воздействия атмосферы, воды и др сред. Внутр. пов-сть стальных трубопроводов, резервуаров для горячей и холодной воды, емкостей для хранения нефти и нек-рых продуктов хим. пром-сти можно защищать дешевыми покрытиями из цемента. Особый класс составляют т. наз. конверсионные защитные покрытия, к-рые состоят из стойких соед. на основе самого покрываемого металла (фосфатных, хроматных, оксидных), получаемых путем его хим. или электрохим. обработки. Их используют преим. как основу под лакокрасочные покрытия.
Электрохимическая защита основана на характерной зависимости скорости коррозионных процессов от электродного потенциала металла. Катодную защиту широко используют для снижения скорости коррозии подземных сооружений (трубопроводов, кабелей связи, свайных и стальных фундаментов), корпусов морских судов, эстакад, морских буровых скважин. Обычно катодная защита применяется в нейтральных средах, когда коррозия протекает с кислородной деполяризацией, и, следовательно, в условиях повыш. катодной поляризуемости металла. Существуют два варианта катодной защиты. В первом варианте требуемое смещение электродного потенциала достигается путем катодной поляризации с помощью внеш. источника тока и вспомогат. инертных анодов (защита с наложенным током); во втором – посредством контакта его с массивными электродами из более электроотрицат. металла, к-рые, анодно растворяясь, обеспечивают протекание катодного тока к защищаемой конструкции (гальванич. защита). В качестве “жертвенных” анодов используют сплавы. Первый вариант применяют для защиты протяженных конструкций, обычно в комбинации с изолирующими покрытиями, в средах как с низким, так и с высоким электрич. сопротивлением. Преимущество его – в легкости регулирования защитного тока и поддержании защитного потенциала даже в условиях изменения изолирующих св-в покрытия во времени. Однако при использовании катодной защиты с наложенным током др. металлич. конструкция, расположенная вблизи защищаемой, может служить проводником и подвергаться усиленной коррозии. Гальванич. вариант катодной защиты обычно применяют для 3. от к. небольших конструкций с хорошим покрытием и низким потреблением тока или для локальной защиты. Обычно при этом не наблюдается коррозия соседних металлич. конструкций. Анодная защита, используемая в кислых средах, применима к металлам и сплавам, способным пассивироваться и оставаться пассивными в сравнительно широком интервале значений их потенциалов (большинство переходных металлов и сплавов на их основе, включая нержавеющие и углеродистые стали). Металл пассивируется и поддерживается в пассивном состоянии путем поляризации его внеш. анодным током. Ввиду малой величины тока его проникающая способность высока и защите поддаются даже отдаленные от катода участки пов-сти. Чаще, однако, этот метод используют для защиты емкостей, содержащих агрессивные хим. продукты. См. также Электрохимическая защита . Лит.: Тодт Ф., Коррозия и защита от коррозии. Коррозия металлов и сплавов. Методы зашиты от коррозии, пер. с нем., М. Л., 1966; Плудек В., Зашита от коррозии па стадии проектирования, пер. с англ., М., 1980. Я. М. Колотыркин .

стойкость к воде

1 resistance to water

См. также в других словарях:

Стойкость — Свойство аппаратуры выполнять свои функции и сохранять свои параметры в пределах установленных значений во время и после воздействия на нее определенных ВВФ в течение всего срока службы в заданных условиях эксплуатации Источник … Словарь-справочник терминов нормативно-технической документации

Стойкость бетона — это способность материала долго сохранять свои свойства: огнестойкость и жаростойкость, морозостойкость, стойкость бетона в химически агрессивной водной и газовой среде, сохранять свои эксплуатационные качества при работе в неблагоприятных… … Википедия

Стойкость к агрессивной воде — – способность матери­ала противостоять агрессивным водным средам (морс­кой, минерализованной и другой воде). Эта стойкость очень важна в гидромелиоративном строительстве, где часто встречаются минерализованные оросительные, осу­шительные и… … Энциклопедия терминов, определений и пояснений строительных материалов

Стойкость полимерного материала к старению — 8. Стойкость полимерного материала к старению Свойство полимерного материала сохранять значение характерного показателя (или показателей) старения в пределах, установленных в нормативно технической документации, при старении в заданных условиях… … Словарь-справочник терминов нормативно-технической документации

Стойкость полимерного материала к старению в воде — 57. Стойкость полимерного материала к старению в воде Источник: ГОСТ 9.710 84: Единая система защиты от коррозии и старения. Старение полимерных материалов. Термины и определения … Словарь-справочник терминов нормативно-технической документации

Термическая стойкость жаростойких бетонов — Термическая стойкость жа­ростойких бетонов – стойкость жаростойкого бетона при периодическом циклическом нагреве до 800°С. и охлаждении в воде или на воздухе, характеризуемая числом циклов, кото­рое выдерживает бетон до разрушения или… … Энциклопедия терминов, определений и пояснений строительных материалов

Базальтовая фибра — (от лат. fibra волокно) короткие отрезки базальтового волокна предназначенные для дисперсного армирования вяжущих смесей, типа бетона, в строительстве. Диаметр волокна от 20 мкм до 500 мкм. Длина волокна от 1 мм до… … Википедия

ФОСФИДЫ — соединения фосфора с более электроположит. элементами. По типу хим. связи Ф. подразделяют на соед. с преим. ионной связью, металлоподобные и с преим. ковален тной связью. К ионным относятся Ф. щелочных и щел. зем. элементов и металлов подгруппы… … Химическая энциклопедия

Пигмент — Красящие вещества на прилавке рынка в Гоа, Индия Пигмент (лат. pigmentum краска) компонент наполненных композиционных материало … Википедия

Бирюза — Кусочек бирюзы, около 2,5 см в длину Формула CuAl6(OH)2[PO4] … Википедия

Пигмент (технология) — Красящие вещества на прилавке рынка в Гоа, Индия. Пигменты компоненты наполненных композиционных материалов, придающие материалам непрозрачность, цвет, противокоррозионные и другие свойства. Слово пигмент может иметь несколько оттенков значений.… … Википедия

Пигменты и технология пигментов — Красящие вещества на прилавке рынка в Гоа, Индия. Пигменты компоненты наполненных композиционных материалов, придающие материалам непрозрачность, цвет, противокоррозийные и другие свойства. Слово пигмент может иметь несколько оттенков… … Википедия

Каллаит — Бирюза Кусочек бирюзы, около 2,5 см в длину Формула CuAl6[PO4]4(OH)8·5H2O Сингония триклинная Цвет Голубой, светло синий, сине зелёный, зелёный … Википедия

Пигменты (технология) — Красящие вещества на прилавке рынка в Гоа, Индия. Пигменты компоненты наполненных композиционных материалов, придающие материалам непрозрачность, цвет, противокоррозионные и другие свойства. Слово пигмент может иметь несколько оттенков значений.… … Википедия

ГОСТ 9.710-84: Единая система защиты от коррозии и старения. Старение полимерных материалов. Термины и определения — Терминология ГОСТ 9.710 84: Единая система защиты от коррозии и старения. Старение полимерных материалов. Термины и определения оригинал документа: 34. Абляционное старение полимерного материала Старение полимерного материала при воздействии… … Словарь-справочник терминов нормативно-технической документации

Титан — (Titanium) Физические и химические свойства титана, получение титана Применение титана в чистом виде и в виде сплавов, применение титана в виде соединений, физиологическое действие титана Содержание Содержание Раздел 1. История и нахождение в… … Энциклопедия инвестора

Устойчивость металлов к коррозии

Что такое коррозийная стойкость

Способность того или иного металла сопротивляться коррозии, называется коррозийной стойкостью. Эта способность определяется скоростью протекания коррозии в определенных условиях. Чтобы оценить скорость коррозии, используют количественные и качественные характеристики.

Качественные характеристики — это:

изменение внешнего вида поверхности металла;

изменение микроструктуры металла.

Количественные характеристики — это:

время до появления первого очага коррозии;

количество очагов коррозии, образовавшихся за некоторый промежуток времени;

утончение металла за единицу времени;

изменение массы металла на единицу площади поверхности за единицу времени;

объем поглощенного или выделившегося газа в процессе коррозии на единице поверхности за единицу времени;

плотность электрического тока для данной скорости коррозии;

изменение того или иного свойства за определенный промежуток времени (механические свойства, отражательная способность, электрическое сопротивление).

Для разных металлов характерна разная стойкость к коррозии. Чтобы устойчивость к коррозии повысить, используют специальные методы: легирование для стали, хромирование, алитирование, никелирование, окраска, цинкование, пассивация и т.д.

В присутствии кислорода и чистой воды, железо быстро корродирует, реакция идет по формуле:

В процессе коррозии, рыхлый слой ржавчины покрывает металл, и этот слой отнюдь не защищает его от дальнейшего разрушения, коррозия идет до полного уничтожения металла. Более активную коррозию железа вызывают растворы солей: если в воздухе присутствует даже немного хлорида аммония (NH4Cl), коррозийный процесс пойдет значительно быстрее. В слабом растворе соляной кислоты (HСl) реакция тоже активно пойдет.

Азотная кислота (HNO3) в концентрации более 50% вызовет пассивацию металла, – он покроется хоть и хрупким, но все же защитным слоем. Дымящая азотная кислота безопасна для железа.

Серная кислота (H2SO4) в концентрации более 70% пассивирует железо, а если сталь марки Ст3 держать в 90% серной кислоте при температуре 40°С, то в данных условиях скорость ее коррозии не превысит 140 мкм в год. Если же температура составит 90°С, то коррозия пойдет с в 10 раз большей скоростью. Серная кислота концентрацией 50% железо растворит.

Ортофосфорная кислота (H3PO4) не вызовет коррозии железа, как и безводные органические растворители, как растворы щелочей, водный аммиак, сухие Вr2 и Сl2.

Если к воде добавить тысячную долю хромовокислого натрия, то он станет отличным ингибитором коррозии железа, как и натрия гексаметафосфат. А вот ионы хлора (Cl-) снимают с железа защитную пленку и усиливают коррозию. Железо технически чистое, в котором содержится примерно 0,16% примесей, отличается высокой устойчивости к коррозии.

Стали среднелегированные и низколегированные

Легирующие добавки хрома, никеля или меди в низколегированных и среднелегированных сталях повышают их устойчивость к водной и атмосферной коррозии. Чем больше хрома — тем выше устойчивость стали к окислению. Но если хрома меньше 12%, то химически активные среды подействуют на такую сталь разрушительно.

В высоколегированных сталях легирующих компонентов больше 10%. Если в стали содержится от 12 до 18% хрома, то такая сталь выдержит контакт почти с любой из органических кислот, с пищевыми продуктами, окажется стойкой к азотной кислоте (HNO3), к щелочам, ко многим растворам солей. В 25% муравьиной кислоте (CH2O2) коррозия высоколегированной стали пойдет со скоростью порядка 2 мм в год. Однако сильные восстановители, соляная кислота, хлориды и галогены разрушат высоколегированную сталь.

Стали нержавеющие, в которых содержится от 8 до 11% никеля и от 17 до 19% хрома более стойки к коррозии чем просто высокохромистые стали. Такие стали выдерживают кислые окислительные среды, как то хромовокислая или азотокислая, а также сильные щелочные.

Никель в качестве добавки усилит стойкость стали к неокислительным средам, к атмосферным факторам. Но среды кислые восстановительные и кислые с ионами галогенов, – разрушат пассивирующий оксидный слой, в результате сталь потеряет устойчивость к кислотам.

Более высокую коррозийную устойчивость, чем хромоникелевые стали, имеют стали нержавеющие с добавлением молибдена в количестве от 1 до 4%. Молибден даст стойкость к сернистой и серной кислотам, к органическим кислотам, к морской воде и галогенидам.

Ферросилиций (железо с добавлением от 13 до 17% кремния), так называемое железокремнистое литье, обладает коррозийной стойкостью благодаря наличию оксидной пленки SiO2, и которую не способны разрушить ни серная, ни азотная, ни хромовая кислоты, они лишь усиливают эту защитную пленку. А вот соляная кислота (HCl) легко приведет к коррозии ферросилиция.

Сплавы никеля и чистый никель

Никель стоек ко многим факторам, как к атмосферным, так и к лабораторным, к чистой и соленой воде, к щелочным и нейтральным солям, таким как карбонаты, ацетаты, хлориды, нитраты и сульфаты. Не насыщенные кислородом и не горячие органические кислоты не причинят вреда никелю, как и кипящая концентрированная щелочь гидроксид калия (KOH) в концентрации до 60%.

Коррозию вызовут восстановительные и окислительные среды, окислительные щелочные или кислые соли, окислительные кислоты, такие как азотная, влажные газообразные галогены, оксиды азота и диоксид серы.

Монель-металл (до 67 % никеля и до 38 % меди) более стоек к действию кислот, чем чистый никель, но действие сильных окисляющих кислот не выдержит. Отличается довольно высокой стойкостью к кислотам органическим, к значительному количеству растворов солей. Атмосферная и водная коррозия не грозят монель-металлу, безопасен для него также фтор. Монель-металл безопасно выдержит действие кипящего фтороводорода (HF) концентрацией 40%, как его выдерживает платина.

Сплавы алюминия и чистый алюминий

Защитная оксидная пленка алюминия делает его устойчивым к обычным окислителям, к уксусной кислоте, к фтору, просто к атмосфере, и к значительному количеству органических жидкостей. Технически чистый алюминий, в котором примесей меньше 0,5%, очень стоек к действию перекиси водорода (H2O2).

Разрушается под действием едких щелочей сильных восстановительных сред. Разбавленная серная кислота и олеум не страшны алюминию, но серная кислота средней концентрации его разрушит, как и горячая азотная кислота.

Защитную оксидную пленку алюминия способна разрушить соляная кислота. Контакт алюминия со ртутью или с солями ртути разрушителен для первого.

Чистый алюминий более устойчив к коррозии, чем например сплав дюралюминий (в котором до 5,5% меди, 0,5% магния и до 1% марганца), который менее стоек к коррозии. Силумин (добавка от 11 до 14% кремния) в этом отношении более устойчив.

Сплавы меди и чистая медь

Чистая медь и ее сплавы не корродируют ни в соленой воде, ни на воздухе. Не страшны меди в плане коррозии: разбавленные щелочи, сухой NH3, нейтральные соли, сухие газы и большинство органических растворителей.

Такие сплавы как бронза, в которых содержится много меди, выдерживают нахождение в кислотах, даже в холодной концентрированной или в горячей разбавленной серной кислоте, либо в концентрированной или разбавленной соляной кислоте при обычной температуре (25°С).

В отсутствие кислорода медь не корродирует при контакте с органическими кислотами. Не оказывают разрушительного действия на медь ни фтор, ни сухой фтороводород.

Но медные сплавы и чистая медь корродируют от различных кислот если есть кислород, а также при контакте с влажным NH3, некоторыми кислыми солями, влажными газами, типа ацетилена, CO2, Cl2, SO2. Медь легко взаимодействует со ртутью. Латунь (цинк и медь) не отличается высокой устойчивостью к коррозии.

Чистая вода, ровно как и чистый воздух, не приводит к коррозии цинка. Но если в воде или в воздухе присутствуют соли, углекислый газ или аммиак, то начнется коррозия цинка. Цинк растворяется в щелочах, особенно быстро — в азотной кислоте (HNO3), медленнее — в соляной и серной кислотах.

Органические растворители и нефтепродукты в принципе не оказывают корродирующего действия на цинк, но если контакт будет длительным, с крекинг-бензином, например, то кислотность бензина повысится при окислении его на воздухе, и начнется коррозия цинка.

Высокая устойчивость свинца к водной и атмосферной коррозии — известный факт. Не корродирует свинец и при нахождении в почве. Но если в воде содержится много углекислого газа, то свинец в ней растворится, поскольку образуется гидрокарбонат свинца, который уже будет растворим.

В целом свинец очень стоек к растворам нейтральным, умеренно стоек к щелочным, а также к некоторым кислотам: серной, фосфорной, хромовой и сернистой. Концентрированной серной кислотой (от 98%) при температуре в 25°С, свинец можно медленно растворить.

Фтороводород при концентрации 48% растворит свинец при нагревании. Сильно взаимодействует свинец с соляной и азотной кислотами, с муравьиной и уксусной кислотой. Серная кислота покроет свинец труднорастворимым слоем хлорида свинца (PbCl2), и дальше растворение уже не пойдет. В концентрированной азотной кислоте свинец также покроется слоем соли, но разбавленная азотная кислота растворит свинец. Хлориды, карбонаты и сульфаты к свинцу не агрессивны, а растворы нитратов — наоборот.

Хорошая коррозийная устойчивость — отличительная черта титана. Он не окисляется сильными окислителями, выдерживает растворы солей, FeCl3 и т.д. Концентрированные минеральные кислоты вызовут коррозию, однако даже кипящая азотная кислота в концентрации менее 65%, серная — до 5%, соляная — до 5% – коррозии титана не вызовут. Нормальная коррозийная устойчивость к щелочам, к щелочным солям и органическим кислотам выделяет титан в ряду других металлов.

Цирконий более устойчив к серной и соляной кислотам чем титан, однако к царской водке и влажному хлору — устойчив менее. Обладает высокой химической стойкостью к большинству щелочей и кислот, устойчив к перекиси водорода (H2O2).

Действие некоторых хлоридов, кипящая концентрированная соляная кислота, царская водка (смесь концентрированных азотной HNO3 (65—68 % масс.) и соляной HCl (32—35 % масс.), горячая концентрированная серная кислота и дымящая азотная — вызывают коррозию. Очень значимым в плане коррозии является такое свойство циркония, как гидрофобность, то есть этот металл не смачивается ни водой, ни водными растворами.

Превосходная химическая стойкость тантала подобна стеклу. Его плотная оксидная пленка защищает металл при температурах до 150°С от действия хлора, брома, йода. Большинство кислот в нормальных условиях не действуют на тантал, даже царская водка и концентрированная азотная кислота не вызывают коррозии. Растворы щелочей практически не действуют на тантал, но на него действуют фтороводород и концентрированные горячие растворы щелочей, чтобы растворить тантал, применяют расплавы щелочей.

Читайте также:  Монтаж мягкой кровли
Ссылка на основную публикацию