Нельзя не учитывать снеговую и ветровую нагрузку

Как расчитать снеговую и ветровую нагрузку на крышу

При проектировании крыши, нужно учитывать нагрузки, действующие на нее — снеговую и ветровую. Чтобы определиться с показателями этих величин, можно обратиться в специальную строительную организацию, где инженеры помогут вам с расчетами. Но если хотите все сделать самостоятельно и не сомневаетесь в своих силах, то здесь Вы найдете необходимые формулы с подробным описанием величин, которые понадобятся при расчёте. Итак, для начала разберемся, что же представляют из себя эти нагрузки и почему их обязательно необходимо учитывать.

Российский климат очень разнообразен. Важно понимать, что на крышу строящегося дома будут оказывать влияние изменение температур, ветровое давление, осадки и другие физико-механические факторы. Причем степень их влияния напрямую будет зависеть от района строительства. Всё это будет оказывать давление не только на ограждение крыши — кровлю, но и на несущие конструкции, такие как стропила и обрешётка. Надо понимать, что дом — это единая конструкция. По цепной реакции нагрузка от крыши передается на стены, а от них — на фундамент. Поэтому важно рассчитать все до мелочей.

Снеговая нагрузка

Снежный покров, образующийся в зимние периоды на крыше дома, оказывает на нее определенное давление. Чем севернее район, тем больше снега. Кажется, что и угроза поломок выше, но стоит быть более осторожным при проектировании дома в районе, где происходит периодическая смена температур, способная вызвать таяние снега и последующее его промерзание. Средний вес снега 100 кг/м3, а вот в сыром состоянии он может достигать 300 кг/м3. В таких случаях снеговая масса может стать причиной деформации стропильной системы, гидро- и теплоизоляции, что повлечёт за собой протечки кровли. Такие погодные условия скажутся и на быстром и неравномерном сходе снегового покрова с крыши, что может быть опасным для человека.

Чем больше уклон кровли, тем меньше снеговых отложений на ней будет задерживаться. Но если ваша кровля имеет сложную форму, то в местах стыка кровли, где образуются внутренние углы, может собираться снег, что будет способствовать образованию неравномерной нагрузки. Лучше устанавливать снегозадержатели в районах, где количество осадков достаточно велико, чтобы снег, собравшийся возле края карниза, не мог повредить систему водостока. Уборку снега можно осуществлять самостоятельно, но этот процесс нельзя назвать стопроцентно безопасным.

Для того, чтобы обеспечить безопасный сход снега и предотвратить образование сосулек, применяют систему кабельного обогрева. Ей можно управлять автоматически или вручную. Зависит от вашего желания и выбора. Нагревательные элементы такой системы располагают по всему краю крыши перед водосточным желобом.

Для России значение снеговой нагрузки будет зависеть от района строительства. Определить, какой вес снегового покрова будет в вашем районе, поможет специальная карта.

Технология расчета снеговой нагрузки: S=Sg*m, где Sg — расчётное значение веса снегового покрова на 1м2 горизонтальной поверхности земли, принимаемое по таблице, а m – коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Расчётное значение веса снегового покрытия Sg принимается в зависимости от снегового района Российской Федерации.

Определение снеговой нагрузки местности

Снеговой районIIIIIIIVVVIVIIVIII
Вес снегового покрытия Sg (кгс/м2)80120180240320400480560

Коэффициент m зависит от угла наклона ската кровли, при углах наклона ската кровли:

меньше 25 градусов m принимают равным 1

от 25 до 60 градусов значение m принимают равным 0,7 (примерно, для каждого уклона свое значение)

более 60 градусов значение m, в расчёте полной снеговой нагрузки, не учитывают.

Ветровая нагрузка

Ветер оказывает боковое давление на стены дома и крышу. Воздушный поток, сталкиваясь с препятствием, распределяется, уходя вниз к фундаменту и наверх в карнизный свес крыши. Если не рассчитывать давление ветра, то кровельное покрытие может просто сорвать от ураганного ветра. Такое разрушение не всегда можно исправить каким-то косметическим ремонтом, зачастую это приводит к необходимости замены кровли. Важным показателем при расчете воздействия ветра учитывают аэродинамический коэффициент. Он зависит от угла уклона кровли. Чем круче скат, тем нагрузка будет больше, и ветер будет стараться «опрокинуть» крышу. Если же угол вашей кровли небольшой, то ветер будет воздействовать на крышу подобно подъёмной силе, стараясь сорвать и отнести ее прочь. Для того, чтобы этого не случилось, нужно правильно соблюдать конструкцию кровли. Устойчивость стропильной системы зависит от обеспечения пространственной жесткости, которая складывается из правильного сочетания в ней раскосов, подкосов и диагональных связей, а также жесткого крепления их между собой. Помимо этого, ветер может переносить предметы, которые при столкновении с крышей будут оставлять механические повреждения. Чтобы этого не произошло, нужно внимательно выбирать кровельное покрытие и правильно организовывать обрешетку для его укладки.

Давление ветра, как и вес снегового покрова, будет зависеть от района строительства. Определить районирование можно по размещённой ниже карте.

Технология расчёта ветровой нагрузки

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по таблице ниже в зависимости от типа местности. Принимаются следующие типы местности:

А – открытые побережья морей, озёр и водохранилищ, пустыни, степи, лесостепи, тундра;

B – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;

С – городские районы с застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h – при высоте сооружения h до 60 м. и 2 км. – при большей высоте.

Высота z, мКоэффициент k для типов местности
≤ 50,750,500,40
101,000,650,40
201,250,850,55
401,501,100,80
601,701,301,00
801,851,451,15
1002,001,601,25
1502,251,901,55
2002,452,101,80
2502,652,302,00
3002,752,502,20
3502,752,752,35
≥ 4802,752,752,75

Примечание: при определении ветровой нагрузки типы местности могут быть различными для разных расчётных направлений ветра.

Ветровая и снеговая нагрузки при проектировании навесов

Особое внимание расчёту необходимо уделить тем, кто задумался о проектировании навеса – например, для беседки или стоянки автомобиля. Обычно в таких случаях используют экономичную конструкцию, не имеющую достаточную жесткость. Поэтому нельзя игнорировать давление снега. Рекомендуется чистить снег вовремя, не допуская образования снежного покрова толщиной более 30 см. Для навеса, выполненного из дерева, надёжнее будет сделать сплошную обрешётку и усиленные стропила. Если же вы выбрали металлическую конструкцию, то она должна иметь соответствующую толщину профиля. В любом случае, для выбора материалов необходимой жесткости, лучше использовать результаты расчета.

Примеры расчёта снеговой и ветровой нагрузок для Москвы и Московской области

Пример №1: Расчёт снеговой нагрузки

уклон кровли: 35 градусов

Найдем полное расчётное значение снеговой нагрузки S:

полное расчётное значение снеговой нагрузки определяется по формуле: S=Sg*m

по карте зон снегового покрова территории РФ определяем номер снегового района для Москвы: в нашем случае — это III, что соответствует по таблице весу снегового покрытия Sg=180 (кгс/м2);

коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие для угла крыши в 35 градусов m=0,7

получаем: S=Sg*m = 180*0,7 = 126 (кгс/м2)

Пример №2: Расчёт ветровой нагрузки

уклон кровли: 35 градусов

высота здания: 20 метров

тип местности: городские территории

Найдем полное расчётное значение ветровой нагрузки W:

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле: W=Wo*k ,

По карте зон ветрового давления по территории РФ определяем для Москвы регион I

Нормативное значение ветровой нагрузки, соответствующее I району, принимаем Wo=23(кгс/м2)

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по табл. 6 k=0,85

Расчет снеговой нагрузки на кровлю: как не наделать ошибок при проектировании и эксплуатации крыши

Если вы когда-нибудь разгребали снег, то хорошо знаете, каким тяжелым он может быть. И что говорить о крыше, на которой за первый месяц зимы собирается такая шапка, которая способна проломить даже довольно прочную конструкцию! И особенно актуальна тема грамотного обустройства крыши для жителей северных регионов России, где сугробы есть уже в сентябре. Вот почему при строительстве дома все задаются вопросом: выдержит ли кровля всю массу снега, сбрасывать его каждые 2 недели, или нет.

Вот для этой цели и было разработано такое понятие, как нормативная снеговая нагрузка и совокупность ее с ветровой. Здесь действительно немало тонкостей и нюансов, и, если вы хотите разобраться – мы будем рады помочь!

Содержание

Принцип работы крыши: предельные состояния

Итак, расчет снеговой нагрузки на кровлю делают с учетом двух предельных состояний крыши – на разрушению и прогиб. Говоря простым языком, это именно та способность всей конструкции сопротивляться внешним воздействиям – до того момента, пока она не получит местное повреждение или недопустимую деформацию. Т.е. пока крыша не продавится или не повредится настолько, что ей понадобится ремонт.

Предел несущих способностей крыши

Как мы уже сказали, предельных состояний всего различают два. В первом случае речь идет о том моменте, когда стропильная конструкция исчерпала свои несущие способности, включая ее прочность, устойчивость и выносливость. Когда этот предел преодален, крыша начинает разрушаться.

Этот предел обозначают так: σ ≤ r или τ ≤ r. Благодаря этой формуле профессиональные кровельщики рассчитывают, какая нагрузка для конструкции будет еще предельно допустимой, и какая станет ее превышать. Другими словами, это – расчетная нагрузка.

Для такого вычисление вам нужны такие данные, как вес снега, угол наклона ската, ветровая нагрузка и собственный вес крыши. Также имеет значение, какая была использована стропильная система, обрешетка и даже теплоизоляция.

А вот нормативная нагрузка высчитывается исходя из таких данных, как высота здания и угол наклона скатов. И ваша задача вычислить и расчетную нагрузку, и нормативную, и перевести их в линейную. Для существует специальный документ – СП 20. 13330. 2011 в пунктах 4.2.10.12; 11.1.12.

Предел крыши на прогиб стропильной конструкции

Второе предельное состояние говорит о чрезмерном деформациях, статических или динамических нагрузках на крышу. В этот момент в конструкции происходят недопустимые прогибы, да так, что раскрываются сочинения. В итоге получается, что стропильная система как бы цела, не разрушена, но все-таки ей нужен ремонт, без которого она не сможет функционировать дальше.

Такой предел нагрузки вычисляют при помощи формулы f ≤ f. Она означает, что погиб стропил при нагрузке не должен превышать определенного предельного состояния. А для балки перекрытия есть своя формула – 1/200, что означает, что прогиб не должен быть больше, чем 1 на 200 от измеряемой длины балки.

И правильно вести расчет снеговой нагрузки сразу по обеим предельным состояниям. Т.е. ваша задача при расчете количества снега и его влияния на крышу не допустить прогиба больше, чем это возможно.

Вот ценный видео-урок для “терпеливых” на эту тему:

Нормативная снеговая нагрузка в вашей местности

Когда говорят о расчете снеговой нагрузки на крышу, то говорят о том, сколько килограмм снега может приходиться на каждый квадратный метр крыши, пока она реально может держать такой вес до начала деформации конструкции. Говоря простым языком, какой шапке снега можно позволить лежать на крыше каждую зиму без опасения того, что она проломит кровлю или расшатает всю стропильную систему.

Такой расчет делают еще на стадии проектирования дома. Для этого первым делом вам нужно изучить все данные по специальным таблицам и картам СП 20.3330.2011 «Нагрузки и воздействия». Исходя из этого узнайте, будет ли запланированная ваши конструкция надежной.

Например, если согласно расчетам она должна спокойно выдерживать слой снега в 200 килограмм на каждый квадратный метр, тогда нужно будет внимательно следить за тем, чтобы снежная шапка на крыше не была выше одного высоту. Но, если если снег на крыше уже превышает 20-30 см и вы знаете, что скоро пойдет дождь, то его лучше убрать.

Итак, чтобы узнать нормативную снеговую нагрузку в той местности, где вы строите дом, обратитесь к такой карте:

Кроме того, такой же коэффициент не используется для зданий, которые хорошо защищены от ветра другими зданиями или высоким лесом. Уравнение расчета у вас будет выглядеть вот так:

  • для первого предельного состояния, где рассчитывается прочность, примените формулу qр. Сн = q×µ,
  • для второго предельного состояния, где рассчитывается возможный прогиб крыши, применяйте такую формулу qн. Сн = 0,7q×µ.

При этом, как вы уже заметили, для второй группы предельных состояний вес снега следует учитывать с коэффициентом 0,7, т.е. сама формула будет выглядеть вот так: 0,7q.

Удельный вес: такой легкий и тяжелый снег

А теперь перейдем к практике. Если вы живете в России, а не на южном континенте без зимы, то знаете, каким на самом деле бывает снег: невероятно легким и неимоверно тяжелым. Например, тот же пушистый снежок в морозную и сухую погоду при температуре -10°С будет иметь плотность около 10 кг на кубический метр. А вот снег под конец осени и в начале зимы, который долго лежал на горизонтальных и наклонных поверхностях и «слежался», уже имеет массу куда больше – от 60 килограмм на кубический метр. К слову, узнать плотность снега не сложно – достаточно зимой вырезать большой лопатой образец снега в один кубический метр и взвесить его.

Если мы говорим о рыхлом снеге, который, по идее, легок и не доставляет проблем, то знайте, что здесь таится некая опасность. Рыхлый снег как ни какой другой быстро вбирает в себя все осадки в виде дождя и становится уже мокрым снегом. А его нахождение на крыше, где нет грамотно организованного стока, чревато большими проблемами.

Далее, весной в процессе длительной оттепели удельный вес снега также значительно растет. У сухого уплотненного снега среднестатистическая плотность находится в пределах от 200 до 400 кг на кубический метр. Не упускайте также такой важный момент, когда снег долго оставался лежать на крыше и не было нового снегопада, а вы его не убирали. Тогда независимо от его плотности, он будет иметь всю ту же массу, хотя визуально сама «шапка» стала меньше в два раза. В особо влажном климате весной удельный вес снега достигает 700 кг на кубический метр!

Снеговой мешок и температура воздуха

«Cнеговым мешком» называет тот снег на крыше, который превышают средние нормативы на толщину, характерные для конкретной местности. Или более просто: если выше 50 см на глаз.

Обычно снеговые мешки скапливается на не ветреной стороне крыши и в местах, где расположены слуховые окна и другие элементы крыши. Как раз в таких местах и ставят сдвоенные и усиленные стропильные ноги, либо вообще делают сплошную обрешетку. Кроме того, здесь по всем правилам должна быть специальная подкровельная подложка, чтобы избежать протечек.

Поэтому в более теплых регионах России плотность снега получается всегда больше, чем в холодных. Ведь в таких местностях зимой снег уплотняется под действием солнца, верхние слои сугроба давят на нижние. Учитывайте также, что снег, который перебрасывает с места на место увеличивает свой удельный вес минимум в два раза. Благодаря всему этому средний удельный вес обычно равен посреди зимы 280 + – 70 кг на кубический метр.

А весной в период обильного таяния мокрый снег способен весить почти тонну! Можете ли вы себе представить, что на вашей крыше находится одновременно сразу несколько тонн снега? Вот почему тот факт, что в процессе строительства крыши на стропильной системе висят сразу несколько рабочих и это якобы говорит о ее прочности, во внимание брать не стоит. Ведь пару человек точно не весят сразу несколько тонн.

Учитывайте, что в расчете нормативной нагрузки также принимается во внимание средняя температура воздуха в январе. Какая именно у вас, смотрите уже по карте СП 20.13330.2011:

Если окажется, что у вас средняя температура в январе меньше, чем 5 градусов по Цельсию, то коэффициент снижения снеговой нагрузки 0,85 тогда не применяется. Ведь из-за такой температуры снег зимой постоянно будет подтаивать снизу, образовывая наледь и задерживаясь на крыше.

И, наконец, чем больше угол ската, тем меньше на нем всегда остается снега, ведь тот постепенно сползает под собственным весом. А на тех крышах, у которых угол наклона больше или равен 60 градусов, снега не остается вообще. Поэтому в таком случае коэффициент µ должен быть равен нулю. В это же время для ската с углом 40° µ равен 0,66, 15° – 0,33 и для 45° градусов – 0,5.

Ветер и распределение снега на двух скатах

В тех регионах, где средняя скорость ветра все три зимних месяца превышает 4 м/сек, на пологих крышах и с уклоном от 7 до 12 градусов снег частично сносится и здесь его нормативное количество следует слегка уменьшить, умножив на 0,85. В остальных случаях он должен быть равен единице, либо его можно не использовать, что вполне логично.

В таком случае ваша формулу теперь будет иметь такой вид:

  • расчет на прочность Qр.cн = q×µ×c;
  • расчет на прогиб Qн.cн = 0,7q×µ×c.

Накопление снега на крыше также напрямую зависит от ветра. Значение имеет форма крыши, как она расположена относительно преобладающих ветров и какой угол наклона ее скатов (не в плане того, как легко съезжает снег, а в плане того, легко ли ветру его сносит).

Из-за всего этого снега на крыше может быть как меньше, чем на плоской поверхности земли, так и больше. Плюс на обоих скатах одной крыши может быть абсолютно разная высота снежной шапки.

Поясним подробнее последнее утверждение. Например такое нередкое явление, как метель, постоянно переносит снежинки на подветренных сторону. И этому препятствует конек крыши, который, задерживая ветер, уменьшает скорость движения снежных потоков и снежинки оседают больше на одном скате, чем на другом.

Получается, что с одной стороны крыши снега может лежать меньше, чем в норме, а с другой – намного больше. И это тоже нужно учитывать, ведь получается, что в таком случае на одном из скатов собирается почти вдвое больше снега, чем на земле!

Для расчета такой снеговой нагрузки применяется такая формула: для двускатных крыш с углом наклона 20 градусов, но меньше 30, процент накопления снега будет равен 75% с наветренной стороны и 125% – с подветренной. Этот процент высчитывается от количества снежного покрова, который лежит на плоской земле. Значение всех этих коэффициентов указано в нормативном документе СНиР 2.01.07-85.

И, если вы определили, что ветер в вашем регионе будет создавать ощутимую разницу снежного покроя на разных скатах, то с подветренной стороны нужно будет устроить спаренные стропил:

Если же у вас вообще нет данных по розе ветров местности, или они не точны, тогда отдайте предпочтение максимальной нагрузке, чтобы подстраховаться – так, как-будто оба ската вашей крыши находятся с подветренной стороны и на них всегда будет больше снега, чем на земле.

Так что происходит потом со снеговым мешком с подветренной стороны? Он постепенно сползает и давит уже на свес кровли, пытаясь его сломать. Вот почему по правилам свес кровли должен быть равен укреплен, в зависимости от кровельного его покрытия.

К слову, если ваша крыша еще и имеет перепад высот, вам будет полезно посмотреть этот видео-урок:

Формула фактической снеговой нагрузки на кровлю

Следующий важный момент. Часто снеговая нагрузка рассчитывается с таким простым и понятным конечным результатом, как n-е количества килограмм на квадратный метр кровли. Но стропильная система сама по себе намного сложнее, и оценивать давление только на ее сплошное покрытие не совсем верно.

Дело в том, что каждый элемент стропильной системы крыши берет на себя определенную нагрузку, которая была изначально рассчитана только на него одного, а не на всю крышу сразу. А поэтому необходимо перевести единицы измерения кг/м 2 в единицу измерения кг/м, т.е. килограммы на метры.

Это значит измерить линейное давление на стропила, или обрешетку, свесы и прогоны. А все это – линейные конструкции, нагрузки действуют вдоль продольной оси каждого:

Если мы возьмем отдельное стропило, на нее действует та нагрузка, которая будет расположена прямо над ним. И чтобы изменить площадь общей нагрузки на крышу, нужно изменить ширину шага установки стропил.

Итог: учет совокупности всех нагрузок

И, наконец, подведем итог и отметим самую распространенную ошибку при расчете снеговых нагрузок на крышу. Это – опущение того момента, что все нагрузки действуют в совокупности. Сама крыша имеет вес, стоящий на ней человек, утеплители и много чего другого!

Поэтому все нагрузки, которые воздействуют на крышу, нужно суммировать и множить на коэффициент 1,1. Вот тогда вы получите уже какое-то реальное значение. Почему на 1,1? Чтобы учесть дополнительные неожиданные факторы, вы ведь не хотите, чтобы стропильная система работала на пределе? Ремонт обычно бывает сложным и дорогостоящим.

В зависимости от полученного значения, вам теперь нужно рассчитать шаг установки стропил. Во внимание также нужно будет взять длину стены здания и удобство размещения на ней целого числа стабильных ног при одинаковом расстоянии: например, 90 см, 1,5 метра, 1,2 метра.

Довольно часто решающий критерий выбора шага стропил – экономический, хотя свои условия также диктует выбранное кровельное покрытие. Но помните о том, что при обустройстве крыши все просчитывают так, чтобы стропила легко могли выдерживать возлагаемые на них давление. А для этого прикиньте несколько вариантов установки стропил и определите для каждого этого варианта сечение досок и расход материала.

Правильно выбранным шагом считается такой, где материалоемкость самая меньшая при том, что итоговые свойства остаются такими же. И учитывайте при этом, что, кроме стропил, обрешетки и прогонов еще в конструкции крыши всегда есть такие дополнительные несущие элементы, как стойки.

Снеговая нагрузка на кровлю: расчет и нормативное значение по СНиП

При строительстве крыши одним из важных технических решений является расчет максимальной снеговой нагрузки, определяющий конструкцию стропильной системы, толщину элементов несущей конструкции. Для России нормативное значение снеговой нагрузки находится по специальной формуле с учетом района местонахождения дома и норм СНиП. Для снижения вероятности последствий от чрезмерного веса снежной массы, при проектировании кровли обязательно выполняют расчет значения нагрузки. Особое внимание уделяется необходимости установки снегозадержателей, препятствующих схождению снега со свеса крыши.

Кроме оказания чрезмерной нагрузки на крышу, снежная масса, иногда, является причиной протечек в кровле. Так, при образовании полосы наледи, свободный сток воды становится невозможным и талый снег вероятней всего попадет в подкровельное пространство. Самые большие снегопады приходятся на долю горных районов, где снежный покров достигает нескольких метров в высоту. Но, наиболее негативные последствия от нагрузки происходят при периодическом оттаивании, наледи и промерзании. При этом возможны деформации кровельных материалов, неправильная работа водосточной системы и лавинообразный поток снега с крыши дома.

Факторы влияния снеговой нагрузки

При расчете нагрузки от снежных масс на скатную кровлю следует учитывать тот факт, что до 5% массы снега испаряется в течение суток. В это время он может сползать, сдуваться ветром, покрываться настом. Вследствие этих трансформаций возникают следующие негативные последствия:

  • нагрузка от слоя снега на несущую конструкцию кровли имеет свойство возрастать в несколько раз при резком потеплении с последующим морозом; это вызывает превышение нагрузки, расчет которой выполнялся некорректно; стропильная система, гидроизоляция и теплоизоляция при этом подвергаются деформациям;
  • кровля сложной формы с многочисленными примыканиями, переломами и другими архитектурными особенностями, имеет свойство собирать снег; это способствует неравномерной нагрузке, что не всегда учитывается при расчете;
  • снег, который сползает к карнизу, собирается возле краев и предоставляет опасность для человека; по этой причине в районах с большим количеством осадков рекомендуется заблаговременно устанавливать снегозадержатели;
  • сползание снега с карниза может повредить водосточную систему; во избежание этого нужно своевременно очищать крышу или применять снегозадержатели.

Способы очистки крыши от снега

Целесообразным выходом из ситуации является ручная очистка. Но, исходя из безопасности для человека, выполнять подобные работы крайне опасно. По этой причине расчет нагрузки оказывает значительное влияние на конструкцию кровли, стропильной системы и других элементов крыши. Давно известно, что чем круче скаты, тем меньше снега задержится на крыше. В регионах с большим количеством осадков в зимний период года угол наклона кровли составляет от 45° до 60°. При этом расчет показывает, что большое количество примыканий и сложных соединений обеспечивает неравномерную нагрузку.

Для предотвращения образования сосулек и наледи применяют системы кабельного обогрева. Нагревательный элемент устанавливают по периметру крыши прямо перед водосточным желобом. Для управления системой подогрева используют автоматическую систему управления или вручную контролируют весь процесс.

Расчет массы снега и нагрузки по СНиП

При снегопаде нагрузка может деформировать элементы несущей конструкции дома, стропильную систему, кровельные материалы. С целью предотвращения этого на стадии проектирования выполняют расчет конструкции в зависимости от воздействия нагрузки. В среднем снег весит порядка 100кг/м 3 , а в мокром состоянии его масса достигает 300 кг/м 3 . Зная эти величины, достаточно просто можно рассчитать нагрузку на всю площадь, руководствуясь всего лишь толщиной снегового слоя.

Толщина покрова должна измеряться на открытом участке, после чего это значение умножают на коэффициент запаса – 1,5. Для учета региональных особенностей местности в России используют специальную карту снеговой нагрузки. На её основе построены требования СНиП и других правил. Полная снеговая нагрузка на крышу рассчитывается при помощи формулы:

где S – полная снеговая нагрузка;

Sрасч. – расчетное значение веса снега на 1 м 2 горизонтальной поверхности земли;

μ – расчетный коэффициент, учитывающий наклон кровли.

На территории России расчетное значение веса снега на 1м 2 в соответствии со СНиП принимается по специальной карте, которая представлена ниже.

СНиП оговаривает следующие значения коэффициента μ:

  • при уклоне крыши менее, чем 25° его значение равняется единице;
  • при величине уклона от 25° до 60° он имеет значение 0,7;
  • если уклон составляет более 60° , расчетный коэффициент не учитывается при расчете нагрузки.

Друзья, У-ра, свершилось и мы рады представить вам онлайн калькулятор для расчета снеговой и ветровой нагрузки, теперь вам не нужно ничего прикидывать на листочке или в уме, все просто указал свои параметры и получил сразу нагрзку. Кроме этого калькулятор умеет считать глубину промерзания грунта, если вам известен его тип. Вот ссылка на калькулятор -> Онлайн Калькулятор снеговой и ветровой нагрузки. Кроме этого у нас появилось много других строительных калькуляторов посмотреть список всех вы можете на этой странице: Строительные калькуляторы

Наглядный пример расчета

Возьмем кровлю дома, который находится в Московской области и имеет уклон 30°. В этом случае СНиП оговаривает следующий порядок производства расчета нагрузки:

  1. По карте районов России определяем, что Московский регион находится в 3-м климатическом районе, где нормативное значение снеговой нагрузки составляет 180 кг/м 2 .
  2. По формуле из СНиП определяем полную нагрузку:180×0,7=126 кг/м 2 .
  3. Зная нагрузку от снежной массы, делаем расчет стропильной системы, которая подбирается исходя из максимальных нагрузок.

Установка снегозадержателей

Если расчет выполнен правильно, тогда снег с поверхности крыши можно не убирать. А для борьбы с его сползанием с карниза используют снегозадержатели. Они очень удобны в эксплуатации и освобождают от необходимости удаления снега с кровли дома. В стандартном варианте применяют трубчатые конструкции, которые способны работать, если нормативная снеговая нагрузка не превышает 180 кг/м 2 . При более плотном весе используют установку снегозадержателей в несколько рядов. СНиП оговаривает случаи использования снегозадержателей:

  • при уклоне 5% и более с наружным водостоком;
  • снегозадержатели устанавливают на расстоянии 0,6-1,0 метра от края кровли;
  • при эксплуатации трубчатых снегозадержателей под ними должна предусматриваться сплошная обрешетка крыши.

Также СНиП описывает основные конструкции и геометрические размеры снегозадержателей, места их установки и принцип действия.

Плоские кровли

На плоской горизонтальной поверхности скапливается максимально возможное количество снега. Расчет нагрузок в этом случае должен обеспечивать необходимый запас прочности несущей конструкции. Плоские горизонтальные крыши практически не строят в районах России с большим количеством атмосферных осадков. Снег может скапливаться на их поверхности и создавать чрезмерно большую нагрузку, которая не учитывалась при расчете. При организации водосточной системы с горизонтальной поверхности прибегают к установке подогрева, который обеспечивает стекание воды с крыши.

Уклон в сторону водосточной воронки должен быть не менее 2°, что даст возможность собирать воду со всей кровли.

При строительстве навеса для беседки, стоянки автомобиля, дачного домика особое внимание уделяют расчету нагрузки. Навес в большинстве случаев имеет бюджетную конструкцию, которая не предусматривает влияния больших нагрузок. С целью увеличения надежности эксплуатации навеса используют сплошную обрешетку, усиленные стропила и другие конструктивные элементы. Используя результаты расчета можно получить заведомо известное значение нагрузки и использовать для строительства навеса материалы необходимой жесткости.

Расчет основных нагрузок дает возможность оптимально подойти к вопросу выбора конструкции стропильной системы. Это обеспечит длительную службу кровельного покрытия, повысит его надежность и безопасность эксплуатации. Установка возле карниза снегозадержателей позволяет обезопасить людей от сползания опасных для человека снежных масс. В дополнение к этому отпадает необходимость ручной очистки. Комплексный подход в проектировании кровли также включает вариант монтажа системы кабельного обогрева, которая будет обеспечивать стабильную работу водосточной системы при любой погоде.

Продукты Robot Structural Analysis

Знания

Изучите основы и оттачивайте навыки для повышения эффективности работы в Продукты Robot Structural Analysis

Не удалось извлечь оглавление

Снеговые и ветровые нагрузки

Автор:

Снеговые и ветровые нагрузки могут быть сформированы следующим образом:

  • Выберите меню “Нагрузки” > “Ветер и снег” > “Ветер и снег 2D/3D”.
  • Щелкните значок .

Диалоговое окно Снег/Ветер содержит условия, с помощью которых можно сгенерировать нагрузку снег/ветер:

    Очертание – определяет элементы конструкции, для которых будет сгенерирована нагрузка снег/ветер. При создании очертания используются номера выбранных узлов. Она необходима для определения общих снеговых либо ветровых коэффициентов конструкции.

Для выделения очертания необходимо выполнить следующее:

  1. Введите номера соответствующих узлов.
  2. Выделите узлы в области рисования.
  3. В случае определения вручную можно создать два типа очертаний: открытое или закрытое (в зависимости от того, возвращаетесь вы к первому узлу или нет).
  • Авто – начинает автоматическое построение очертания конструкции. Устанавливаются параметры в соответствии с выбранными опциями автоматического распознавания очертания.
  • Без парапетов – если опция активна, то при автоматическом генерировании очертания конструкции парапеты не учитываются.
  • Без пустот – если опция активна, то при автоматическом генерировании очертания пустоты не учитываются. Взамен создаются фиктивные элементы очертания.
  • С основанием не на грунте – если опция активна, автоматическое генерирование очертания будет выполнено для основания, не опирающегося на грунт. То есть, можно представить очертания для аэродинамически изолированной конструкции.
  • Изолированная кровля – если эта опция активна, то определяемая конструкция – отдельная крыша, и нагрузка генерируется только на нее.
  • Для определения нагрузки снег/ветер должны быть заданы основные параметры конструкции:

      Длина — определяет глубину сооружения (длину). Она необходима для определения общих снеговых либо ветровых коэффициентов конструкции.

    Правая нижняя часть окна содержит следующие две опции:

    • Ветер – включение этого параметра позволяет создать варианты нагружения для ветра при генерировании снеговой/ветровой нагрузок; при отключении параметра Robot не выполняет создание таких вариантов нагружения;
    • Снег – включение этого параметра позволяет создать варианты нагружения для снега при генерировании снеговой/ветровой нагрузок; при отключении параметра Robot не выполняет создание таких вариантов нагружения.

    Ниже располагается опция После создания нагрузки вывести на экран пояснения. Если данная опция выключена, варианты снеговой либо ветровой нагрузки создаются, но Robot не запускает текстовый редактор, выдающий на экран значения нагрузок для отдельных вариантов нагружения снег/ ветер. Файлы, содержащие отчет по вычислению снеговых/ветровых нагрузок, будут сохранены Robot в локальной папке пользователя Users. DocumentsAutodeskOutput.

    При нажатии на кнопку Параметры (если Очертание, Пролет и Длина уже определены) открывается диалоговое окно для установки параметров снеговой/ветровой нагрузки.

    Как произвести расчет ветровой и снеговой нагрузки на кровлю в зависимости от региона проживания

    Кровля осуществляет постоянную защиту здания от всех погодных и климатических проявлений, исключая контакт всех материалов с атмосферной или дождевой водой и являясь граничным слоем, отсекающим воздействие морозного воздуха на чердачное помещение.

    Таковы основные и наиболее важные функции кровли в представлении неподготовленного человека, они вполне верны, но не отражают полный список функциональных нагрузок и испытываемых напряжений.

    При этом, реальность гораздо суровее, чем это выглядит на первый взгляд, и воздействие на кровлю не ограничивается определенным износом материала.

    Оно передается практически всем несущим элементам постройки — в первую очередь, стенам здания, на которые непосредственно опирается вся крыша, а в конечном счете — фундаменту.

    Пренебрегать всеми создающимися нагрузками нельзя, это приведет к скорому (иногда — внезапному) разрушению постройки.

    Типы нагрузок на кровлю

    Основными и наиболее опасными воздействиями на кровлю и на всю конструкцию в целом являются:

    • Снеговые нагрузки.
    • Ветровые нагрузки.

    При этом, снеговые действуют в течение определенных зимних месяцев, отсутствуя в теплое время, тогда как ветер создает воздействие круглый год. Ветровые нагрузки, имея сезонные колебания силы и направления, в той или иной степени присутствуют постоянно и опасны периодически случающимися шквальными усилениями.

    Кроме того, интенсивность этих нагрузок имеет разный характер:

    • Снег создает постоянное статическое давление, которое можно регулировать путем очистки крыши и удаления скоплений. Направление действующих усилий постоянно и никогда не меняется.
    • Ветер действует непостоянно, рывками, внезапно усиливаясь или утихая. Направление может изменяться, что заставляет все конструкции крыши иметь солидный запас прочности.

    Внезапный сход с крыши больших масс снега может причинить ущерб имуществу или людям, оказавшимся в местах падения. Кроме того, периодически случаются кратковременные, но чрезвычайно разрушительные атмосферные явления — ураганные ветра, сильные снегопады, особенно опасные при наличии мокрого снега, который на порядок тяжелее обычного. Предсказать дату таких событий практически невозможно и в качестве защитных мер можно лишь увеличивать прочность и надежность кровли и стропильной системы.

    Сбор нагрузок на кровлю

    Зависимость нагрузок от угла наклона крыши

    Угол наклона крыши определяет площадь и мощность контакта кровли с ветром и снегом. При этом, снеговая масса имеет вертикально направленный вектор силы, а ветровое давление, вне зависимости от направления — горизонтальный.

    Поэтому, принимая угол наклона более крутым, можно снизить давление снежных масс, а иногда и полностью исключить возникновение скоплений снега, но, при этом, увеличивается «парусность» крыши, ветровые напряжения возрастают.

    Очевидно, что для снижения ветровых нагрузок идеальной была бы плоская кровля, тогда как именно она не позволит скатываться массам снега и поспособствует образованию больших сугробов, при таянии способных промочить всю постройку. Выходом из ситуации является выбор такого угла наклона, при котором максимально удовлетворяются требования как по снеговой, так и по ветровой нагрузкам, а они в разных регионах имеют индивидуальные значения.

    Зависимость нагрузки от угла крыши

    Вес снега на квадратный метр крыши в зависимости от региона

    Количество осадков — показатель, напрямую зависящий от географии региона. Более южные районы снега почти не видят, более северные имеют постоянное сезонное количество снеговых масс.

    При этом, высокогорные районы, вне зависимости от географической широты, имеют высокие показатели по количеству выпадающего снега, что, в сочетании с частыми и сильными ветрами, создает массу проблем.

    Строительные Нормы и Правила (СНиП), соблюдение положений которых является обязательным к выполнению, содержат специальные таблицы, отображающие нормативные показатели количества снега на единицу поверхности в разных регионах.

    Эти данные являются основой расчетов снеговых нагрузок, поскольку они вполне достоверны, а также приводятся не в средних, а в предельных значениях, обеспечивающих должный запас прочности при строительстве крыши.

    Тем не менее, следует учитывать устройство кровли, ее материал, а также — наличие дополнительных элементов, вызывающих скопления снега, поскольку они могут существенно превышать нормативные показатели.

    Вес снега на квадратный метр крыши в зависимости от региона на схеме ниже.

    Регион снеговой нагрузки

    Расчет снеговой нагрузки на плоскую крышу

    Расчет несущих конструкций выполняется по методу предельных состояний, то есть таких, когда испытываемые усилия вызывают необратимые деформации или разрушения. Поэтому прочность плоской кровли должна превышать величину снеговой нагрузки для данного региона.

    Для элементов крыши существует два типа предельных состояний:

    • Конструкция разрушается.
    • Конструкция деформируется, выходит из строя без полного разрушения.

    Расчеты ведутся по обоим состояниям, имея целью получить надежную конструкцию, гарантированно выдерживающую нагрузку без последствий, но и без излишних затрат строительных материалов и труда. Для плоских крыш значения снеговых нагрузок будут максимальными, т.е. поправочный коэффициент уклона равен 1.

    Таким образом, согласно таблицам СНиП, общий вес снега на плоской кровле составит величину норматива, умноженную на площадь кровли. Значения могут достигать десятки тонн, поэтому зданий с плоскими крышами в нашей стране практически не строят, особенно в регионах с высокими нормами осадков в зимнее время.

    Нагрузка на плоскую крышу

    Расчет снеговой нагрузки на кровлю онлайн

    Пример расчета снеговой нагрузки поможет наглядно продемонстрировать порядок действий, а также покажет возможную величину давления снега на конструкции дома.

    Снеговая нагрузка на кровлю рассчитывается с помощью следующей формулы:

    где S — давление снега на квадратный метр кровли.

    Sg — нормативная величина снеговой нагрузки для данного региона.

    µ — поправочный коэффициент, учитывающий изменение нагрузки на разных углах наклона кровли. От 0° до 25° значение µ принимается равным 1, от 25° до 60° — 0,7. При углах наклона кровли свыше 60° снеговая нагрузка не учитывается, хотя в реальности бывают скопления мокрого снега и на более крутых поверхностях.

    Произведем подсчет нагрузки на кровлю площадью 50 кв.м, угол наклона — 28° (µ=0,7), регион — Московская область.

    Тогда нормативная нагрузка составляет (по данным СНиП) 180 кг/кв.м.

    Умножаем 180 на 0,7 — получаем реальную нагрузку 126 кг/кв.м.

    Полное давление снега на кровлю составит: 126 умножаем на площадь кровли — 50 кв.м. Результат — 6300 кг. Таков расчетный вес снега на крыше.

    Снеговое воздействие на кровлю

    Ветровая нагрузка на кровлю

    Расчет ветровой нагрузки производится подобным образом. За основу берется нормативное значение ветровой нагрузки, действующее в данном регионе, которое умножается на поправочный коэффициент высоты здания:

    W — ветровая нагрузка на квадратный метр площади.

    Wo — нормативная величина по региону.

    k — поправочный коэффициент, учитывающий высоту над поверхностью земли.

    Имеются три группы значений :

    • Для открытых участков земной поверхности.
    • Для лесных массивов или городской застройки с высотой препятствий от 10 м.
    • Для городских поселений или местностей со сложным рельефом с высотой препятствий от 25 м.

    Все нормативные значения, как и поправочные коэффициенты содержатся в таблицах СНиП и должны учитываться при расчетах нагрузок.

    В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами. Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона.

    Все расчеты должны опираться на СНиП, для уточнения или проверки результатов рекомендуется использовать онлайн-калькуляторы, которых много в сети. Лучшим способом станет применение нескольких калькуляторов с последующим сравнением полученных величин. Правильный расчет — основа долговременной и надежной службы кровли и всей постройки.

    Полезное видео

    Более подробно о кровельных нагрузках вы можете узнать из этого видео:

    Расчет ветровой нагрузки алюминиевых конструкций

    На светопрозрачные ограждающие конструкции, системы вентилируемого фасада, а также участки планарного остекления действуют постоянные и временные нагрузки. К постоянным нагрузкам относится собственный вес подсистем, утеплителя и облицовки. Временные нагрузки – это ветер, снег, дождь.

    Современные фасадные системы, это не просто красивая облицовка, а несущая стена с функциями тепловой и акустической защиты. Поэтому надо правильно рассчитать несущую способность каждой алюминиевой или стальной конструкции под действием постоянных и временных нагрузок.

    В строительных нормах нет четкого разделения в методике расчета светопрозрачных фасадов, планарного остекления или навесных вентилируемых фасадов с классическими несущими конструкциями.

    Это приводит к неразберихе, ошибкам, ненужным запасам по прочности. Как следствие увеличивается конечная цена за квадратный метр алюминиевой или стальной фасадной системы.

    Какая нормативная документация регламентирует расчет нагрузок

    До недавнего времени за расчет любых ограждающих, фасадных конструкций отвечал СНиП 2.01.07-85*. Он был написан без учета специфики работы навесных вентилируемых фасадов и светопрозрачных конструкций. Это создавало неудобства для проектировщиков и конструкторов, которые занимались данной проблематикой.

    На смену морально устаревшему СНиП 2.01.07-85* пришёл свод правил нагрузок и воздействий СП 20.13330 2011. В нем прописаны этапы расчетов современных алюминиевых и стальных вентилируемых фасадных систем, светопрозрачных конструкций, планарного остекления. Расчет ветровой, снеговой и дождевой нагрузок необходимо проводить согласно СП 20.13330 2011.

    Кроме свода правил нагрузок и воздействий расчет ветровой нагрузки определяется по ГОСТ 24756-81.

    Для правильного и быстрого расчета ветровых и снеговых нагрузок применяются таблицы, в которых указаны нормативные показатели в зависимости от географической зоны:

    Таблица определения снеговой нагрузки местности по районам на территории РФ

    Снеговой районIIIIIIIVVVIVIIVIII
    Вес снегового покрытия Sg (кгс/м2)80120180240320400480560

    Карта зон снегового покрова территории РФ

    Таблица определения ветровой нагрузки местности по районам на территории РФ

    Ветровой районIIIIIIIVVVIVII
    Ветровая нагрузка Wo (кгс/м2)17233038486073

    Карта зон ветрового давления по территории РФ

    Алгоритм проектирования и расчета строительной конструкции

    1. Расчет любой фасадной системы осуществляется по определённому алгоритму:
    2. Рисуется схема строительной конструкции с указанием всех элементов и их особенностей. На основе конструктивной создаётся расчетная схема. На неё наносятся все нормативные и расчетные нагрузки, силы и моменты.
    3. Отдельные нагрузки собираются в одну. Этот процесс называется сбор нагрузок и указание вектора их действия.
    4. Расчёт статической конструкции по правилам и законам строительной механики. В результате расчётов выводятся усилия в элементах строительной конструкции.
    5. По полученным результатам производится подбор сечения профиля, колонны, ригеля, балки, оконного каркаса.
    6. Осуществляется проверка полученной конструкции по второму предельному состоянию. Проверяется жесткость системы с учётом прогибов, кренов, кручения.
    7. Проводится проверка по первому предельному состоянию. Определяется прочность и надёжность системы, а также пространственная устойчивость и срок эксплуатации.
    8. Проектирование узловых соединений. Подбор сечения и размера кронштейнов, болтов, заклёпок и других крепёжных элементов.

    Элементы расчета снеговой и ветровой нагрузки

    Расчет ветровой и снеговой нагрузки проводится в комплексе. Если рассчитать фасадную или любую другую строительную систему на действие ветра, но не учесть нагрузку от снега, то результат – это полное или частичное разрушение с потерей элементами системы несущей способности.

    Снеговая нагрузка

    Учёт снеговой нагрузки характерен для участков светопрозрачных фасадов расположенных под углом к горизонту, а также зенитных фонарей.

    Алгоритм расчета и сбора нагрузок стандартный, но есть несколько отличительных особенностей. Например, при расчете снеговой нагрузки для светопрозрачных козырьков балконов и лоджий, а также многоуровневых стеклянных крыш учитывается снос снега. По нормативам толщина снеговой подушки одна, а по факту в результате переноса снежных масс она может быть другой.

    Это может увеличить фактическую толщину снежной подушки в 1,5-2 раза, что является определяющим при расчёте.

    Пример расчета снеговой нагрузки на козырек лоджии

    В первую очередь определяется нагрузка от снега, который равномерно распределен по расчетной поверхности.

    Значение снеговой нагрузки на светопрозрачной крыши определяется по формулам:

    ? = ?0? = ?0 (1 + 1 ℎ (?1?1 + ?2?2 )) = 180 ∙ (1 + 1 8 (0.4 ∗ 16 + 0.4 ∗ 1.765)) = = 340 кгс/м. кв.,
    где ?1 = 16 м, ?2 = 1,765 м, ?1 = ?2 = 0,4 (для ровных плоскостей с ? ≤ 20° );
    ℎ – высота перепада, м от карниза верхнего покрытия до кровли нижнего. При значении более 8 м, принимаемая при определении ? равной 8 м.

    В различной нормативной документации есть нестыковки по назначению коэффициентов надёжности по снеговой нагрузке. В СП 20.13330.2011 снеговые нагрузки указаны расчётными, а для изменения их на нормативные рекомендуется использовать коэффициент 0.7 (т.е. коэффициент ?? = 1.43).

    В МДС 31-8.2002 можно встретить рекомендации по назначению повышенного значения коэффициента ?? = 1.6. В результате, аналогично с собственным весом заполнения, есть разночтения, которые необходимо исключить.

    В данном вопросе можно согласиться с требованием современного и актуального СП, поскольку с 01.07.2003 г. вступило в силу изменение снеговых нагрузок. Оно было внесено в СНиП 2.01.07-85* под номером 2 и всё еще действует. МДС4 был выпущен раньше и данного изменения не затрагивал.

    Ветровая нагрузка

    Проблем при проведении расчета ветровой нагрузки на ограждающие конструкции стало значительной меньше с 2011 года. С этого года был введен в действие СП 20.13330.2011. Споры о правильности изменения в среде экспертов не утихают.

    Для подробного и грамотного расчета вентилируемых фасадных систем в 2004 году были выпущены «Рекомендации по составу и содержанию документов и материалов, представляемых для технической оценки пригодности продукции», в которых прописаны более жесткие требования к расчету и учёту ветровых нагрузок. Но в результате, на текущий момент, действуют нормы, заведомо превышающие рекомендации.

    Проблемы расчета и учета ветровых нагрузок начинаются с того, что до 2011 года, несмотря на упоминание в СНиП «Нагрузки и воздействия» о необходимости расчета и учёта пульсационной ?? составляющей ветровой нагрузки, многие проектировщики рассчитывали витражные конструкции на действие средней ?? составляющей.

    С 2001 года, согласно актуализированной нормативной документации, введено в действие понятие максимальной нагрузки для ограждающих конструкций и узлов их сочленения.

    Это значение можно понимать как средний показатель ветрового порыва. Учет ветрового давления сыграл на руку проектировщикам. Формы светопрозрачных и вентилируемых фасадов усложняются, высота зданий увеличивается. Ветровой расчет становится очень важной и ответственной частью в проекте строительного объекта.

    В то же время, возникает ряд вопросов по корректному применению методики определения данной нагрузки и оценке полученных в конструкциях усилий и перемещений. На примере расчётов по методикам до и после 2011 года предлагается оценить влияние введения значения пиковой ветровой нагрузки.

    Интересное видео о том, как ветром вырвало часть вентилируемого фасада в Астане в мае 2018. Вот к чему приводят ошибки при расчете ветровых нагрузок в статическом расчете:

    Пример расчета ветровой нагрузки на здание

    Алгоритм выполнения расчета не отличается для определения ветровой нагрузки на фасад здания, или расчет колонны на ветровую нагрузку, или расчет многослойного светопрозрачного стеклопакета на ветровую нагрузку. Формулы и порядок действия не меняются.

    Задача состоит в определении сечения фасадной стойки. Она находится на втором этаже на высоте 10 м от уровня земли многоэтажного жилого здания высотой 50 м. Для заполнения проема применяется светопрозрачный стеклопакет.

    Подбор стойки происходит по принципу получения фактического прогиба конструкции меньше, чем максимально допустимый.
    ?факт ≤ ?доп, где ?факт – значение прогиба стойки от действия внешних сил, рассчитывается по формуле:

    ?факт=(5/384)×(qH4/EJ), где q – ветровая нагрузка, равномерно распределенная по всей площади стойки;

    E – модуль упругости алюминия, принимаемый по таблице 3 обязательного приложения 1 СНиП 2.03.06-85 в зависимости от температуры эксплуатации (от -40 до +50 °С модуль упругости 5 2 E  7,110 кгс /см. );

    ?доп. – гипотетический разрешенный прогиб стойки.

    В среде проектировщиков принято считать, что максимальный прогиб алюминиевой конструкции не может быть больше:

    • для одинарного остекления: ?доп. = ? 200
    • для остекления стеклопакетами: ?доп. = ? 300

    Для определения расчетного сечения стойки надо выразить её момент инерции. Расчет проводится с учетом заполнителя из стеклопакетов:

    Определение q – вариант сбора нагрузки до 2011 года

    Для определения нормативной нагрузки, которая равномерно давит на стойку, есть формула:

    где ? – грузовая ширина приложения ветровой нагрузки, (для текущего примера ? = 1м); ?? – нормативное значение средней составляющей ветровой нагрузки, рассчитываемого по формуле:

    где ?0 – нормативное значение ветрового давления, определяемое по таблице 5 СНиП 2.01.07- 85, в зависимости от принадлежности объекта к ветровому району, (для Санкт-Петербурга ?0 = 30 кгс/м.кв.);

    с – аэродинамический коэффициент, определяется по таблице Приложения 4 СниП 2.01.07-85. Для вертикальных фасадов (наклон не более 15°) -с = 0,8;

    ?(?) – показатель, учитывающий изменение ветрового давления по высоте, согласно таблице 6 СниП 2.01.07-85, в зависимости от типа местности и высоты расположения над поверхностью земли. Для типа местности В и высоты расположения витража 10 метров – ? = 0,65;

    ?? = 30 ∙ 0.8 ∙ 0.65 = 15,6 кгс/м. кв.

    ? = 15,6 ∙ 1 = 15,6 кгс/м. п.

    Определение q – вариант сбора нагрузки после 2011 года

    где ?+(−) – нормативный показатель максимального положительного и отрицательного действия ветровой нагрузки,

    рассчитывается по формуле:

    w+ (-) =w0k (ze) [1+ (ze)] сp+ (-) v + (-)

    где ze – эквивалентная высота (согласно п. 11.1.512, эквивалентная высота, приравниваемая к высоте здания. В нашем случае – это 50 метров (вместо 10 метров по методике 2011 года);

    k(ze),  (ze – показатели, учитывающие, соответственно, изменение давления и пульсаций давления ветра на высоте ze (согласно п. 11.1.6 и 11.1.8, k(50)  1,24 ,  (50)  0,77 );

    v + (-) – показатели корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (–); значения этих коэффициентов приведены в таблице 11.84 в зависимости от площади ограждения А, с которой собирается ветровая нагрузка (для нашего примера грузовая площадь равна 3 квадратным метрам и методом интерполяции получено значение  ()  0, 97);
    сp+(-)– максимальные значения аэродинамических коэффициентов положительного давления (+) или отсоса (–), определяемые по

    Витраж будет располагаться в угловой зоне, поэтому:

    Конечная формула приобретает вид:

    w+ (-) = 30×1, 24× [10, 77] ×2, 2×0, 97 140, 5 кгс/м.кв.

    ? = 140,5 ∙ 1 = 140,5 кгс/м.п.

    Есть ли какие-то программы расчета ветровых нагрузок алюминиевых конструкций, и стоит ли им доверять

    Проектировщик старой закалки не доверяют современный технологиям, который значительно облегчают труд инженера-расчетчика. Для более «продвинутых» есть ряд компьютерных программ, которые позволяют точно и быстро определить ветровую нагрузку на здание:

    • SCAD Office, программа ВЕСТ – продвинутый продукт для получения точного результата.
    • Инженерный калькулятор Лира – платная программа, есть возможность попробовать функционал бесплатно в Демо-версии.

    Современная методика расчета нагрузок на вентилируемый или светопрозрачный фасад даёт точный числовой результат. Расчеты всегда можно проверить с помощью многочисленных компьютерных программ, в память которых заранее вбиты все нормативные показатели и поправочные коэффициенты.

    Ветровые нагрузки. Ветровые нагрузки сильно зависят от высоты сооружения, особенностей окружающего пространства и ветрового района.

    К крыше предъявляется еще более жесткие требования, так как она должна выдерживать значительную снеговую и ветровую нагрузки

    Он определяет какую нагрузку будет передавать система на одну точку крепления с учетом высоты, веса облицовки, ветрового района, обледенения и еще много чего.

    . нагрузки от собственного веса системы с учетом возможного обледенения и ветровых нагрузок с учетом пульсационной составляющей и физико.

    Расчет допустимых нагрузок на кронштейн позволит найти баланс между . Опорный кронштейн еще называют «ветровой». Он работает на отрыв.

    Количество точек крепления будет увеличиваться пропорционально высоте здания, это связано с увеличением ветровой нагрузки.

    Читайте также:  Элемент чертежа мансардной стропильной системы
    Ссылка на основную публикацию