Большая жесткость листа

Применение листовых рессор на автомобилях

Применение малолистовых параболических рессор на грузовых автомобилях, автобусах и прицепах имеет преимущества, так как в связи с высокими нагрузками многолистовые рессоры имели бы в этом случае очень большое число листов. Рессоры задней подвески легковых автомобилей, напротив, несут относительно небольшую нагрузку, и поэтому листовая рессора в этом случае благодаря большой длине состоит всего из двух или трех листов (рисунок 1 и рисунок 2). Может применяться также и однолистовая параболическая рессора, недостатком которой является невозможность гарантировать прочность связи ушка.

Рисунок 1 – Двухлистовая рессора задней подвески легкового автомобиля со сплошной полимерной проставкой, имеющая следующие параметры: расстояние между ушками L = 1590 мм, ширина листа В = 70 мм, толщина листа h1 = 9,7 мм, жесткость подвески с2h = 18 Н/мм, статическая нагрузка Fw = 37 кН, напряжения изгиба при этой нагрузке σv = 702 МПа

Рисунок 2 – Трехлистовая рессора задней подвески легкового автомобиля с короткимн пластмассовыми проставками по концам листов. Эта рессора имеет следующие показатели: L = 1194 мм, В = 51 мм, h1 = 6,35 мм, с2h = 15,4 Н/мм, Fw = 2,18 кН, σv = 610 МПа

Возможные поломки рессор

При поломке коренного листа продольно расположенной листовой рессоры второй конец с ушком этой рессоры обеспечивает неразрезной балке заданное направление. Хотя возможность прямолинейного движения при этом и ухудшается, однако аварийная обстановка практически не создается.

При поломке рессоры управляемой передней оси картина иная. Если речь идет о неразрезной оси, то она в месте поломки может переместиться вперед или назад. А поскольку рулевая сошка соединена с рулевым механизмом, то оба передних колеса поворачиваются в одну сторону. Автомобиль резко меняет направление движения, что может привести к наезду или опрокидыванию. Поэтому почти во всех случаях, когда в передней подвеске применяются многолистовые рессоры, принимают какие-то меры на случай их поломки, например, делают дополнительное ушко на переднем конце подкоренного листа, которое охватывает ушко коренного листа (см. рисунок 3).

Рисунок 3 – В качестве меры безопасности на случай поломки ушка коренного листа рессоры вокруг ушка может быть загнут конец второго листа

а — второй лист полностью охватывает ушко коренного листа; б — второй лист заострен и завернут вокруг ушка; в — второй лист заострен, раскатан и завернут вокруг ушка

Еще опасней поломка поперечно расположенной рессоры передней подвески, которая при независимой подвеске служит одновременно и направляющим элементом колес и верхним или нижним рычагом. Автомобиль при этом теряет управляемость и аварии трудно избежать. Поперечные рессоры можно встретить на автомобилях особо малого класса с задним расположением двигателя, отчасти при центральном закреплении. Однако чаще всего это закрепление в двух точках. Применение такой листовой рессоры позволяет избежать применения двух винтовых пружин и стабилизатора, включая детали, необходимые для закрепления последнего. Недостатком использования такого упругого элемента является смещение рессоры в местах закрепления под действием боковых сил.

Действующие силы и моменты

Возникающее при работе подвески изменение длины деталей упругих элементов требует эластичного присоединения мест D крепления (рисунок 4). Под действием боковых сил последние также деформируются, увеличивая положительный угол развала наружного (по отношению к центру поворота) колеса.

Рисунок 4 – Эпюра изгибающих моментов (б) в поперечно расположенной листовой рессоре (а), которая крепится к кузову в точках D

б — эпюра изгибающих моментов

На рисунке приведены силы и характер изменения изгибающего момента при статической исходной нагрузке Fw. В центральной части рессоры между точками D действует постоянный по величине момент Мw = Fwl, поэтому листы рессоры должны иметь на этом участке постоянное сечение. Допускается только изменение ширины листов (как показано).

При нагружении рессоры силами, действующими в одну сторону (рисунок 5), концевые и центральный участки принимают форму дуги. В результате рессора по всей длине работает с заданной жесткостью. Однако при движении на повороте (рисунок 6) на наружной (по отношению к центру поворота) стороне на рессору действует дополнительная сила +ΔFa при соответствующем уменьшении нагрузки на внутренней стороне. Один конец рессоры будет в результате приподнят вверх, в то время как другой ее конец отжимается вниз.

Рисунок 5 – При вертикальном подрессоривании закрепленная в двух точках рессора (а) изгибается на участке между точками крепления. Увеличение нагрузки ΔD в точках D соответствует увеличению сил ΔF на концах рессоры

б — эпюра изгибающих моментов

Рисунок 6 – При поперечно-угловом подрессоривании на повороте внешний по отношению к центру поворота конец рессоры (а) дополнительно нагружается силой ΔFa при соответствующем уменьшении нагрузки — ΔFt на внутренний конец. В центральной части рессоры между опорами происходит изменение направления моментов, следствием чего является увеличение жесткости рессоры. Нагрузка на внешнюю опору Da = D + ΔD, а на внутреннюю Di = D – ΔD, где ΔD = ΔF × 2(1 + e/2) / e

б — эпюра изгибающих моментов

В центральной части действуют противоположно направленные изгибающие моменты, которые стремятся изогнуть этот участок в форме буквы S. В связи с тем, что листы рессоры имеют постоянную толщину, их прогиб в центральной части будет незначительным. Это означает, что при поперечно-угловом подрессоривании на поворотах эта подвеска имеет большую жесткость, чем при одинаково направленном перемещении колес при преодолении препятствия. Взаимосвязь между этими двумя величинами определяется расстоянием e между опорами D. Чем больше величина e, тем больше разнятся эти величины. Однако возможности увеличения e ограниченны, так как длина рессоры в распрямленном состоянии L = e + 2l (см. рисунок 4) должна быть меньше, чем колея tv передних колес. Чем больше величина e, тем короче концевые участки l рессоры и тем выше возникающие в них напряжения. Рессора в этом случае должна состоять из большего числа более тонких листов.

В передней подвеске модели «Opel Kadett» рессоры, закрепленные в двух точках, нагружены только вертикальными силами. Боковые и продольные силы воспринимают нижние рычаги, на которые опираются концы рессор. При этом концы рессор могут поворачиваться относительно рычага в боковом направлении. Обеспечения безопасности на случай поломки не требуется, и конструктивное решение с малолистовой параболической рессорой с двумя опорами оказалось экономически самым выгодным (рисунок 7).

Рисунок 7 – Передняя рессора модели «Opel Kadett B», выпускавшейся до 1973 года. Рессора состоит из двух параболических раскатанных листов. В местах крепления листы отделены один от другого резиновыми накладками

Определение траектории перемещения ушков листовой рессоры

Если поперечно расположенная листовая рессора, закрепленная в двух точках, одновременно заменяет верхний или нижний рычаги, то в этом случае конструктор должен знать траектории центров ушков рессоры при работе подвески на поворотах. Это необходимо для определения мгновенного центра поворота, а также для того, чтобы рассчитать изменение развала и схождения колес.

Точки замеров, образующие траекторию перемещения, получают с помощью пружинных весов. В качестве исходного положения принята выпрямленная рессора (рисунок 8). Величина нагрузки при этом не играет роли.

Рисунок 8 – Центр дуги, описываемой ушком рессоры, закрепленной в двух точках, как правило, смещен в сторону от мест закрепления

В качестве исходных параметров используются величины ходов сжатия f1 и отбоя f2 подвески в направлении оси Y, а измеряемой величиной является боковое смещение Δl обоих салазок, что дает соответствующее значение X. В процессе изучения оба места закрепления D1 (слева) и D2 (справа, на рисунке не изображено) должны параллельно нагружаться или разгружаться. Затем рессору вычерчивают в выпрямленном состоянии в масштабе 1:1, чтобы, исходя из этого положения, иметь возможность нанести полученные значения X в соответствии со значениями Y. Начало координат располагается в центре ушка рессоры. Соединив отдельные точки, получим с обоих концов рессоры дугообразную кривую. Центр кривизны служит кинематическим центром вращения.

Аналогичный процесс может быть применен также при центральном закреплении рессоры, независимо от того, является это закрепление жестким или упругим (рисунок 9).

Рисунок 9 – При жестком закреплении середины рессоры центр дуги, описываемой при работе подвески ушком, располагается вне заделки

При поперечно расположенных листовых рессорах таким же путем осуществляется определение центра поворота. При продольных листовых рессорах определяют траекторию, которая потребуется для уточнения перемещения неразрезной балки, закрепленной на рессорах. В последнем случае рессора должна быть изображена на чертеже в соответствии с ее положением в автомобиле.

Листовые рессоры с прогрессивной характеристикой упругости

Листовые рессоры могут иметь прогрессивную характеристику упругости. Чтобы добиться увеличения жесткости при увеличении нагрузки, рессоры задней подвески легковых автомобилей выполняют двухступенчатыми. В этом случае однолистовая параболическая рессора или двух- либо трехлистовая трапецеидальная при прогибе опираются на лист второй ступени (рисунок 10, варианты а и б). Кроме того, существует возможность установки упора, смещенного по длине рессоры. Этот упор приводит к уменьшению рабочей длины рессоры при ходе сжатия и соответственно к увеличению жесткости (вариант в).

Рисунок 10 – Различные варианты исполнения продольных листовых рессор с прогрессивной характеристикой упругости для легковых автомобилей

а — однолистовая рессора с плавно включающимся подрессорником; б — то же, трапецеидальная; в — укорачивание одного из плеч рессоры на ходе сжатия

Конструктивные решения а и б позволяют так подобрать длину и толщину листов обеих ступеней, что при ходе сжатия подвески до крайнего верхнего положения (т.е. при максимальной нагрузке) напряжения распределяются равномерно. Установка дополнительного ограничителя, напротив, может привести к концентрации напряжений в месте опоры рессоры.

Для грузовых автомобилей изменение нагрузки значительно больше. Чтобы жесткость подвески у незагруженного автомобиля не была чрезмерно высокой, требуется более прогрессивная характеристика, которую можно получить только с помощью дополнительных рессор. Эти дополнительные рессоры с собственной характеристикой упругости крепят на основных рессорах. После определенной величины хода fE подвески (рисунок 11) достигают специальных упоров.

Рисунок 11 – Для грузовых автомобилей требуется значительно более высокая прогрессивность характеристики упругости подвески, которой можно добиться только с помощью дополнительной рессоры, устанавливаемой сверху на основную рессору. Дополнительная рессора после перемещения подвески вверх на определенную величину fE хода упирается в специальные опоры

В большинстве случаев дополнительные рессоры имеют более высокую жесткость, чем основные, что позволяет избежать слишком низкой частоты колебаний груженого автомобиля и удержать в определенных пределах крен кузова на поворотах. Повышения жесткости достигают путем уменьшения длины листов (lZ вместо lH основной рессоры) и увеличения толщины. Поскольку дополнительная рессора включается в работу только в конце хода подвески, возникающие в ней напряжения изгиба меньше, чем в листах основной рессоры.

Расположенные один над другим пакеты рессор могут быть как трапецеидальными (рисунок 12), так и параболическими (рисунок 13), имеющими следующие характеристики:

Таблица 1 – Характеристики наборов листовых рессор

Основная рессораДополнительная рессора
Расстояние между ушками L, мм1800
Длина рессоры, мм1120
Ширина листа B, мм100100
Наибольшая толщина h1, мм2229
Жесткость рессоры c2h, Н/мм245730
Наибольшая нагрузка Fmax, кН33,29,8
Наибольшая нагрузка Fmax, МПа680222

Рисунок 12 – Задняя рессора грузового автомобиля, имеющая прогрессивную характеристику упругости. Трапецеидальная рессора выполнена без проставок между листами

Рисунок 13 – Рессора нового поколения для грузовых автомобилей, имеющая прокладки между листами по концам и в зоне центрального стяжного болта

В обоих случаях в качестве аварийной меры на случай поломки коренного листа сделано так, что конец второго листа охватывает левое ушко. Правый конец рессоры, изображенной на рисунке 12, скользит по опоре. Этот вариант исполнения конца рессоры часто встречается в подвеске грузовых автомобилей (рисунок 14). В легковых автомобилях применение подобного конструктивного решения создавало бы неприятный шум.

Рисунок 14 – Чтобы компенсировать изменение длины в процессе колебаний рессора может с одной стороны иметь скользящую опору

а — прямой конец рессоры с удлиненным для безопасности вторым листом; б — изогнутый коренной лист

Профилированный поликарбонат Borrex: все,что важно знать о материале

Монолитный профилированный поликарбонат Borrex (ПМПЛ) производится в России компанией Юг-Ойл-Пласт — крупнейшим производителем поликарбонатных листов в мире. Это сравнительно новый материал, прочный, легкий и жесткий. Он похож на обычный профнастил или шифер и «работает» по такому же принципу: волны или трапеции — это ребра жесткости, которые увеличивают несущую способность листа.

При толщине 0,8–1,4 мм листовой профилированный монолитный поликарбонат Borrex выдерживает до 350 кг на 1 м². Этого более чем достаточно, чтобы применять его для кровли крыш даже в регионах с высокой снеговой и ветровой нагрузкой.

Оглавление статьи

Где используется

Из-за своей формы, профилированный поликарбонат Борекс — не такой универсальный материал, как ровный монолитный лист. В основном его используют для перекрытия кровли :

  • навесов, веранд, террас, беседок;
  • бытовых и промышленных теплиц, которые не используются зимой;
  • оранжерей и зимних садов;
  • коммерческих и промышленных зданий в качестве светопроницаемых вставок-окон.

Намного реже из него делают фасады, строят заборы и защитные ограждения. Иногда профилированный поликарбонат цветной Borrex можно встретить в качестве прозрачных вставок в крыше вместо стандартных мансардных окон или стильного элемента внутренней отделки: подвесного потолка, декора стен.

Преимущества и недостатки в сравнении с монолитным поликарбонатом

По сути, профиль Borrex — это все тот же монолитный поликарбонат, но с гофрами. Поэтому по свойствам самого вещества — прозрачности, сопротивлению теплопередаче, плотности, склонности к электризации — профилированный лист ничем от ровного не отличается. А вот как у материала отличия есть. И весьма существенные:

  • Большая жесткость. Если размеры профилированного поликарбоната Borrex и ровного листа одинаковы, первый выдержит намного большую нагрузку.
  • Совместимость с профилированными материалами. Волнообразный профиль без зазоров укладывается вместе с еврошифером подходящих размеров, а ПМПЛ ТМ Borrex трапеция 70/13 хорошо подходит по форме к профнастилу С20 и МП20.
  • Лучше вентиляция. Вдоль волн профиля легко перемещается воздух, поэтому он не застаивается в подкровельном пространстве.
  • Легкость. Меньшая толщина кровельного материала при той же несущей способности существенно облегчает всю конструкцию.
  • Простота монтажа. Гофрированный поликарбонат Borrex укладывается практически так же, как и обычный профнастил — с нахлестом и креплением саморезами. Не нужна никакая сварка или специальные профильные направляющие для компенсации теплового расширения.

Теперь о недостатках.

В первую очередь, максимальная толщина у пластикового профнастила Борекс — 1,4 мм, а у монолитного поликарбоната той же марки — 12 мм. Даже с учетом большей несущей способности при равной толщине, поликарбонатый профлист Борекс и близко не выдержит ту же нагрузку, что сплошной ровной лист максимальной толщины.

Кроме того, профилированный поликарбонат прозрачный Borrex смотрится хуже, чем ровный гладкий лист. Особенно в случаях, когда важно создать эффект помещения под открытым небом — на гофрах свет преломляется со всеми вытекающими последствиями.

Звукоизоляция, термоизоляция и другие характеристики поликарбоната Borrex, которые улучшаются с увеличением толщины материала, у поликарбонатного профнастила также хуже. И при этом стоит он, пусть и ненамного — на 5–10%, но дороже.

  • меньше максимальная толщина,
  • хуже звукоизоляция и термоизоляция,
  • меньшая декоративность.

Преимущества и недостатки в сравнении с ПВХ профилем

Прозрачный пластиковый ПВХ профнастил — прямой конкурент профилированного поликарбоната. Особенно после появления на рынке структурированного по двум осям французского профлиста Ondex. Именно с ним и сравним свойства поликарбонатного профиля Borrex. Начнем с преимуществ.

Профилированный Борекс — более ударопрочный материал . Град, даже крупный, падение небольших веток во время ураганного ветра, удар теннисного или футбольного мяча — все это не повредит кровле из поликарбонатного профиля. Впрочем, разница не очень велика — даже бюджетная серия Ondex Ecolux тестируется на прочность «градом» из сотни деревянных шариков диаметром 20 мм, которые в момент удара достигают скорости 80 км/ч.

Более важное преимущество Борекс — в температурной устойчивости . Его диапазон эксплуатационных температур — от −50 °С до +75 °С с возможностью длительного нагрева до +100 °С и кратковременного нагрева до +135 °С. ПВХ профлист Ondex можно использовать при температурах от −20 °С до +60 °С, при этом в зоне отрицательных температур очень резко снижается ударопрочность материала, и чем ниже температура, тем все более хрупким становится ПВХ лист.

Наконец, главный плюс поликарбонатного профнастила Borrex — это его цена . Он стоит как минимум на 75% дешевле, чем листы Ondex при такой же толщине.

Пример

Возьмем профилированный поликарбонат Borrex — купить самый тонкий лист 0,8 мм даже у посредника можно за 700–750 рублей. При размерах 2000×1050 мм выходит 330–360 рублей за 1 м². Цена Ondex Ecolux начинается от 550 рублей за 1 м².

Конечно, есть и другие преимущества, но они незначительны и зависят от того, листы какой толщины сравнивать. Так, как правило, у поликарбонатного профиля немного лучше показатель звукоизоляции и сопротивления теплопередаче, но разница настолько мала, что смысла ее учитывать нет.

  • более ударопрочный,
  • стоит меньше,
  • больший диапазон рабочих температур,
  • меньшая хрупкость при отрицательных температурах.

Недостатков у профилированного поликарбоната Borrex также немало. Остановимся на основных.

Листы Ондекс более жесткие . Поэтому при статической нагрузке, которая возникает, например, от снеговой шапки на кровле, они прогибаются меньше. Чтобы компенсировать недостаток жесткости, профнастил из поликарбоната делают толще, а, значит, и тяжелее.

У профилированного ПВХ Ondex больше возможных цветов (20 оттенков) и форм (свыше 50 трапециевидных и волнообразных профилей). На практике это означает, что можно подобрать такой профиль, который будет точно подходить к выбранной стеновой или кровельной марке профнастила.

Поликарбонат сильно электризуется , из-за чего к его поверхности притягивается пыль и грязь. Кроме того, он не такой гладкий. В результате, листы Ондекс дольше сохраняют прозрачность, очистить от загрязнений их проще и делать это нужно реже.

Под воздействием открытого огня Ондекс раскрывается, как цветок, и сразу же перестает гореть при прекращении нагрева. Поликарбонат плавится и стекает вниз, поджигая другие материалы, например, деревянные стропила.

  • меньшая жесткость,
  • менее пожаробезопасен,
  • больший вес,
  • меньше цветов,
  • радикально меньше возможных профилей,
  • электризация,
  • более шероховатая поверхность.

Если кратко, то поликарбонат профилированный Борекс — это материал для северных регионов, а также в случае ограниченного бюджета. Листы Ondex — решение для южных и центральных регионов. Они идеальны для светопрозрачных вставок в крышах и стенах из профнастила, а также оптимальны в случае, если простота очистки и разнообразие цветов важнее стоимости материала.

Профилированный поликарбонат Борекс: характеристики, цвета, форма профиля

Профилированный поликарбонатный лист Borrex выпускается толщиной 0,8–1,4 мм с одной из двух форм профиля:

  1. ПМПЛ ТМ Borrex трапеция 70/13: высота трапеции — 13 мм, шаг — 70 мм;
  2. ПМПЛ ТМ Borrex волна 76/13: высота волны — 13 мм, шаг — 76 мм.

3 главных размера листа профнастила для крыши: маркировка и форма

Профилированный материал для кровли будет соответствовать заявленным производителем эксплуатационным свойствам при условии выполнения всех требований к монтажу. Качество кровельных работ напрямую зависит от того, насколько размеры листа профнастила для крыши оптимальны для данной конструкции. Мы вас познакомим с типами листовой кровли, укажем, на какие функции влияют ее габариты, и почему нужно выбирать не только по размерам листа, но и по его толщине.

Размеры профиля и качество кровли

Крыша обеспечивает комфорт всего дома. При подборе ее покрытия нельзя допустить ошибки. Что понимают под правильным выбором кровельного материала:

  • размер профлиста для кровли обеспечивает минимальное количество поперечных и боковых стыков;
  • вес листов не создает дополнительную нагрузку, требующую усиления фундамента;
  • вид гофры соответствует типу обрешетки, форме крыши;
  • технические, эксплуатационные характеристики профиля являются оптимальными для условий климата и предполагаемых нагрузок на крышу;
  • внешний вид покрытия органично вписывается в дизайн строения, общий ансамбль участка.

Всем этим пунктам удовлетворяет кровля из профнастила. Этот кровельный материал характеризуют такие качества:

  • небольшой вес;
  • декоративное, вместе с тем, защитное внешнее покрытие профилей металлических;
  • простота монтажа и возможность проведения «латочного» ремонта;
  • широкий выбор размеров и расцветок.

Что такое профнастил и профлист

По ГОСТу к профнастилу относят прессованные холодным прокатом металлические листы с волнистыми ребрами жесткости. Оцинкованная сталь используется чаще всего, но встречается профиль из алюминия, меди, хромоникелевой стали. Производители предлагают листы с волнами овальной, трапециевидной, квадратной, многоугольной форм.

В качестве защиты металла от коррозии используют покрытие на основе цинка и алюминия. С помощью нанесения дополнительных слоев полимеров (полиэстер, тефлон, смесь ПВХ, ПВДФ, пурал, пластизол) повышают прочность, износостойкость, сохранность яркости цвета.

Профлист по технологии изготовления принципиально не отличается от профнастила. Он имеет усиленные ребра жесткости. Размер профлиста больше подходит для кровельных работ.

Прочность, несущая способность любого типа профилированного материала определяется по таким параметрам:

  • толщина;
  • ширина;
  • тип гофры;
  • количество ребер жесткости.

Маркировка и виды профнастила

По техническим характеристикам, рекомендуемой сфере применения классифицируют три вида профилированного настила:

  1. Маркировка «НС», «МП» или кровельный. Высота гофры профиля начинается от 8 мм, сформированы дополнительные ребра жесткости. Такой лист профнастила может иметь толщину от 0,55 до 0,8 мм, вес от 6,3 до 14,5 кг/м2. Он обладает высокой устойчивостью к механическим нагрузкам. Подходит для разнообразных типов кровельных работ.
  2. Маркировка «С» или профлист стеновой. Виды, размеры и цвета могут быть разными. Толщина основы не превышает 0,7 мм. Вес 1-го м2 варьируется в пределах 5,4-7,4 кг. Хорошо зарекомендовал себя как фасадная отделка. В кровельных работах стеновой лист может использоваться для козырьков, крыш в хозпостройках.
  3. Маркировка «Н» или несущий. Имеет самую большую толщину, усиленные ребра жесткости. Вес листов профиля толщиной до 1,2 мм может достигать 24 кг/м2.

Маркировка содержит не только буквенные обозначения, но и цифры, обозначающие размер профнастила:

  • первая цифра после буквы – высота волны;
  • вторая – ширина;
  • третья – максимальная длина профиля.

Каждый из видов профнастила пригоден для использования в качестве кровельного материала в зависимости от дизайна крыши, требований к эксплуатационным качествам.

Длина листов для кровли

Максимальная длина профнастила для крыши ограничена возможностью прокатного стана и не превышает 14 м. Такой размер позволяет минимизировать количество соединений листов и увеличить прочность всего покрытия. Редко длина ската крыши на много превышает 14 м, а это значит, что горизонтальных стыков будет не более 2-х.

Высокая цена и трудности транспортировки длинных листов вывели в топ профнастил длиной 6 м. Но можно заказать любой вариант, что зависит от конструктивных особенностей крыши. Минимальная длина – 0,5 м. Ассортимент кратен 0,5 м и варьируется в пределах от 0,5 м до 14 м.

Специалисты обращают внимание на то, что чем больше стыков, тем больше теряется полезного материала. Каждое соединение профилей металлических делается с нахлестом 20 см.

Таблица твёрдости, плотности и стабильности древесины

Список дерева и его древесины в фотографиях.

Твёрдость

Обычно определяется методом Бринелля. Для этого стальной закалённый шарик диаметром 10 мм вдавливают с силой 100 кг в поверхность древесины, измеряют лунку и рассчитывают величину твёрдости.

Правее от твердости Бринелля приведен тест твёрдости Янки. Выражается в силе (в фунтах), которую нужно приложить к металлическому шарику диаметром 0,444 дюйма (11,28 миллиметра), чтобы вдавить его в древесину на половину диаметра.

Чем тверже дерево, тем выше коэффициент. Твердость древесины в пределах одной породы может отличаться в зависимости от распила (например, плашки радиального распила будут тверже тангенциального). В таблице приведены усредненные значения.

Плотность

Зависит от влажности и для сравнения значения плотности всегда приводят к единой влажности – 12%. Между плотностью и прочностью древесины существует тесная связь. Более тяжелая древесина, как правило, является более прочной. Величина плотности колеблется в очень широких пределах.

По плотности при влажности 12% древесину можно разделить на три группы:

  1. породы с малой плотностью (менее 510 кг/м 3 ): сосна, ель, пихта, кедр, тополь, липа, ива, ольха, каштан, орех;
  2. породы средней плотности (550-740 кг/м 3 ): лиственница, тис, береза, бук, вяз, груша, дуб, клен, платан, рябина, яблоня, ясень;
  3. породы с высокой плотностью (выше 750 кг/м 3 ): акация белая, береза железная, граб, самшит, саксаул, фисташка, кизил.

Условные обозначения стабильности древесины при воздействии влаги:

5 – абсолютно стабильная (древесина не деформируется даже при больших перепадах влажности воздуха);
4 – стабильная (древесина практически не деформируется при небольших перепадах влажности воздуха);
3 – относительно стабильная (древесина весьма незначительно деформируется при небольших перепадах влажности воздуха);
2 – средне-стабильная (древесина заметно деформируется при небольших перепадах влажности воздуха);
1 – не стабильная (древесина значительно деформируется при небольших перепадах влажности воздуха);

НазваниеТвердость Бринелля
кгс/мм2
Твердость Янки
фут
СтабильностьПлотность
кг/м3
Абачи250380-420
Абрикос760-800
Амарант518603860-880
Ангелик4,42
Акация7,12830
Афцелия44830
Афрормозия3,84710
Бакаут45001375
Бальса100120-160
Бамбук42
Берёза312603540-700
Берёза карельская3,518003640-800
Билинга1630630-780
Бокоте2200750-850
Бонгосси3350950-1150
Бриар1600540-700
Бубинга5,726803720-880
Бук3,813001650-700
Венге4,316302750-800
Вишня американская3-3,59504490-670
Вяз313502670-710
Гонкало4,12
Гонсало альвес2160690-950
Граб3,718601500-820
Гренадил32201300
Груша4,22690-800
Дугласия510-7102-3350-770
Дуссия4,54800
Дуб3,7-3,913604600-930
Ель6602400-500
Зебрано4,515753600-700
Ива460
Ипе636802800-1200
Ироко3,512605420-670
Камбала3,55
Каталокс3690900-1050
Каштан560-590
Кедр4580-770
Кемпас4,95800
Кипарис600
Клён европейский414502530-650
Клён канадский4,82530-720
Клён полевой2,51670
Кокоболо4,35650-900
Красное дерево540
Кумаро5,9900-1150
Курупай54
Лапачо62900
Лещина630
Лимба490400-690
Липа4001320-560
Лиственница2,512002-3950-1020
Макассар5,52
Масасауба3150750-900
Махагон58303400-700
Менгарис53
Мербау4-515004690-960
Моаби4,54
Морадо2200850-950
Мутения4,43800-900
Ногал3,53
Овенкол4,43
Оливковое дерево63850-950
Ольха35901380-640
Орех американский44
Орех бразильский62
Орех грецкий510104500-650
Орех европейский54
Орех испанский3,53
Осина4201360-560
Падук3,81725600-700
Палисандр5,527203750-1290
Палисандр индийский3170700-800
Панга4,52950
Пихта350-5002350-450
Платан3,2770650-750
Розовое дерево4,427203800-900
Роузгам5,22
Рябина830700-810
Самшит2100980-1000
Сандаловое дерево900
Сапеле4,23600-650
Секвойя410
Сирень800
Слива800
Сосна2,5380-1240400-500
Сукупира52850-1100
Тигровое дерево4,12
Тик3,510005440-820
Тис12004640-800
Тополь1400-500
Туя340-390
Цирикоте2400800-900
Черемуха1580-740
Черешня3,52630
Шелковица4630-660
Эбен81720950-1300
Эвкалипт3690-1110
Яблоня17302690-720
Ярра5,52820-850
Ясень4-4,113204660-700
Ятоба5,623503900-1150

5 комментариев: Таблица твёрдости, плотности и стабильности древесины

Спасибо за таблицу!
Для столяра это бесценно!

Что делать, если газовый котел задувает при сильном ветре

Обратная тяга в камере сгорания, возникающая при порывах ветра – довольно распространенная проблема. Газовый котел постоянно тухнет при сильных порывах ветра, что ухудшает его эффективность, за счет частого тактования снижает ресурс, а модели с ручным розжигом и вовсе приходится постоянно разжигать даже среди ночи.

Проблема может возникнуть как в напольных атмосферниках с открытой камерой сгорания и вертикальным дымоходом, так и в котлах с закрытой камерой сгорания и коаксиальным дымоходом. Однако исправить ситуацию в более чем 90% случаев не сложно.

Читайте в статье

Убеждаемся, что горелка гаснет именно от ветра

Чтобы не тратить усилия напрасно, что согласно практике иногда случается, стоит точно определить причины затухания горелки, поскольку это может быть и ошибка автоматики, и низкое давление газа, и затруднения с выводом продуктов сгорания. Характерными признаками именно задувания ветром являются:

  • визуальное изменения формы и направления пламени, вызванное ветром;
  • характерный звук вихря в камере сгорания;
  • горелка не отключается без причины в безветренную погоду, данный пункт проверить обязательно!

Частой причиной затухания является низкое давление газа в магистрали или неправильная высота пламени. При низком давлении газа, пламя уменьшается и опускается критически низко к горелке. Чтобы не допустить ее прогорания, автоматика отключает горелку и котел тухнет. Нормальной высотой пламени считаются значения в 2-4 см. Если высота пламя горелки меньше, необходимо обязательно отрегулировать его, но делать это самостоятельно мы не рекомендуем, для этого лучше вызвать газовую службу.

Также необходимо проверить герметичность соединений и всей конструкции дымохода. Прежде всего, при наличии в дымоходе ревизионного отверстия обратите внимание на него: оно обязательно должно быть закрыто, при чем герметично. При невозможности такового, стоит приобрести современную герметичную заглушку.

Что делать, если задувает газовый котел с традиционным вертикальным дымоходом

Задувание через дымовую трубу может быть по причине неправильной конструкции дымохода или крыши, отсутствия деревьев или наличия рядом с дымоходом сооружений, создающих сильные завихрения. Устранить проблему можно одним или, часто, несколькими из описанных ниже методов.

Удлинение высоты наружной части дымохода

Один из самых простых и эффективных (но требующих разумного подхода!) способов является наращивание высоты дымохода. Делается это надеванием на исходный дымоход одной или нескольких труб не менее, чем на 0,5 их диаметра.

Оптимальная высота дымохода согласно СНиП 41-01-2003.

Высота дымовой трубы в частном доме подбирается в зависимости от ее сечения, мощности котла и конструкции крыши. Оптимальной в большинстве случаев считается высота 5-6 метров, считая от колосниковой решетки котла. Все требования к дымоходу описаны в СНиП 41-01-2003. Наиболее часто допускаются нарушения таких требований к высоте дымохода, как:

  • возвышение над плоской поверхностью крыши – не менее 500 мм;
  • возвышение над коньком кровли (при горизонтальном расстоянии до него менее 1,5 м) – не менее 500 мм;
  • высота дымовой трубы при расстоянии от конька 1,5-3 м – вровень с коньком;
  • высота дымовой трубы при расстоянии от конька более 3 м – не ниже линии, проведенной под углом 10° к горизонту.

В случаях, когда профиль крыши конька достаточно высокий, рядом находятся постройки и объекты, способствующие образованию завихрений и задуваний, вышеописанные требования могут быть увеличены. Однако при слишком высокой дымовой трубе, может быть повышенное образование конденсата, тяга может быть излишней и при превышении нормальных значений огромная часть тепла будет попросту вылетать в дымоход.

Если все же была допущена такая ошибка, необходимо использовать заслонку или стабилизатор тяги.

Установка дефлектора

Дефлектор – это насадка особой аэродинамической формы из нержавеющей или оцинкованной стали, которая легко надевается на дымовую трубу и защищает ее от порывов ветра, осадков и мусора, усиливает тягу.

Принцип действия заключается в грамотном использовании силы ветра: поток воздуха обтекает конструкцию и, в зависимости от ее типа, защищает от задувания сверху или со стороны под различными углами, от попадания в трубу мусора и осадков, направляет воздушные массы для увеличения тяги. Некоторые из типов дефлекторов увеличивают эффективность дымохода на 10-20%.

Фото Название Особенности конструкции
Дефлектор ГригоровичаНаиболее распространенный и известный тип конструкции, представляющий из себя усеченный конус, расширенный внизу и еще один конус (гриб) сверху. Воздушный поток направляется в сторону сужения конуса под верхний гриб (внутрь дефлектора) из-за чего над дымоходной трубой происходит разрежение воздуха и, в последствии, усиление тяги. Также верхний гриб защищает от осадков и мусора. Дефлектор крайне не эффективен при низовом ветре.
ЦАГИКонструкция, разработанная Центральным аэрогидродинамическим институтом. Представляет из себя металлическую трубу с экранирующим цилиндром и защитным конусом внутри. Исключает задувания с боков и сверху, защищает от мусора и атмосферных осадков. Но при сильных морозах (ниже минус 15-18°C) может способствовать образованию наледи.
Вольперта-ГригоровичаЭффективный объединенный вариант двух предыдущих типов конструкции: все тот же дефлектор ЦАГИ, но с вынесенным вверх (над дифузором) защитным колпаком конической формы.
Динамический турбодефлекторСферическая конструкция с лопастями, которая вращается при наличии ветра скоростью 0,5 м/с и более. Отлично защищает от задуваний ветра, усиливает тягу более, чем на 50%. Но такая конструкция – отличный вариант при постоянных ветрах, она практически неэффективна при отсутствии ветра и даже может ухудшить эффективность дымохода.
Динамический флюгерный дефлекторОдно из лучших решений, представляет из себя конструкцию из нескольких металлических козырьков, полностью покрывающих сечение дымохода, и флюгера, поворачивающего конструкцию в направлении ветра. В основе конструкции – современные подшипники, вращающие дефлектор при малейшем давлении ветра. Флюгерный дефлектор не только защищает от направленного задувания с любой стороны или осадков, но и за счет направления воздушных потоков в сторону отвода продуктов сгорания усиливает естественную тягу.

Но помните, что излишняя тяга может привести к снижению КПД газового котла или ситуации, когда чрезмерно быстрый поток воздуха тушит фитиль. Например, не лучшими вариантами являются Н-образный дефлектор, в некоторых условиях и турбодефлектор. Поэтому нужно адекватно выбирать тип конструкции, можно проконсультироваться с консультантом в магазине, описав ему свои индивидуальные условия. Стоимость дефлекторной защиты для дымохода – от 300 до 2 000 руб.

Как выбрать комнатный термостат и экономить до 30% в месяц на отоплении

Усеченный конус для «разрыва тяги»

Несмотря на простую конструкцию, способ нельзя назвать простым. Заключается он в создании в дымоходе зоны, которая будет препятствовать дальнейшему движению воздушных масс, создающих обратную тягу. Наиболее эффективным является усеченный конус: поток воздуха, двигающийся по направлению к камере сгорания (обратная тяга) натыкается на зону преграды (усеченный конус), вследствие чего завихряется и не оказывает давления на саму камеру сгорания и пламя горелки.

Сделать его можно самостоятельно, не обладая особыми навыками, однако важно обязательно проконсультироваться со специалистами газовой службы, поскольку в определенных условиях подобные вмешательства могут привести к повышенному образованию угарного газа или аварийной ситуации.

Ошибки в конструкции дымохода

Редко, но бывают ситуации, когда дымоход спроектирован неправильно. Требования к его устройству, опять таки, описаны а СНиП 41-01-2003. Наиболее часто нарушаются такие требования, как:

  • максимально допустимое количество колен – 3;
  • длинна горизонтальных ответвлений не должна превышать 100 см (это касается и конструкции усеченного конуса для «разрыва тяги», описанного выше);
  • не допускаются любые, даже незначительные прогибы конструкции (проверьте на наличие изгибов и повреждений внешнюю часть и особенно края дымохода).

Что делать, если ветром задувает газовый котел с коаксиальным (боковым) дымоходом

Устраняем и предотвращаем обледенение

Наледь образуется не только на оголовье, но и до определенного момента вглубь дымовой трубы. Проблема присуща всем настенным или парапетным конвекционным газовым котлам и происходит за счет большой разницы температур, когда продукты сгорания, среди которых и водяной пар, выводятся улицу, где температура воздуха сильно ниже нуля.

Пар оседает на стенках внутренней трубы в виде конденсата, который замерзает и сужает сечение трубы, препятствует нормальной тяге и даже может стать причиной завихрений или кислородного голодания камеры сгорания.

Временно устранить проблему довольно просто, достаточно аккуратно, не допуская повреждений дымохода, сбить наледь. Для полноценного предотвращения, нужно произвести теплоизоляцию внешней части коаксиального дымохода или использовать специальную конструкцию против обледенения.

Установка дефлектора особой конструкции

В целом, газовый котел с закрытой камерой сгорания редко гаснет при сильном ветре. В таких моделях тяга обеспечивается принудительно и давления ветра из вне просто недостаточно, чтобы создать обратную тягу. Но все же причиной, почему газовый котел задувает ветром, как и в случае с вертикальным дымоходом, может быть отсутствие защитного дефлектора, наличие поблизости строений и объектов, создающих сильные завихрения или ветреная сторона в регионах с сильнейшими порывами. Задувание происходит через трубу забора воздуха.

Коаксиальная модель Bosch 600/3 с заводской защитой от ветра.

Отдельно дефлекторы для коаксиальных дымоходов практически никогда не продаются. Если ваш дымоход не имеет надежной защиты, необходимо приобретать полноценную конструкцию, поскольку для коаксиальных дымоходов защита разрабатывается с учетом конструкции и характеристик самого дымохода.

Самодельная защита от задувания порывами ветра

Если ничего из вышеперечисленного не помогло, среди особых умельцев существует метод создания самодельной защиты цилиндрической формы:

  1. Для усиления тяги и предотвращения образования конденсата, нужно утеплить внешнюю трубу.
  2. На внутреннюю (выхлопную) трубу одевается колено под 90°, направленное вверх.
  3. Дымоход помещается в цилиндр (самодельный или готовую бочку) с отверстием спереди диаметром равным диаметру дымохода. Он защищает выхлоп от бокового ветра, а колено под 90° – от направленного внутрь.
  4. Колено выхлопа выводится вверх, сквозь цилиндр, и накрывается колпаком конической формы большего диаметра (по типу используемого в конструкции дефлектора Григоровича), защищающим от осадков.

В итоге забор воздуха производится из внутренности защитного цилиндра (бочки), а выхлоп производится наверх.

Несмотря на то, что на практике уже встречались такие самодельные конструкции, мы не рекомендуем прибегать к их изготовлению самостоятельно, не имея определенных знаний и навыков. Для этих целей лучше обратиться к специалистам или приобрести готовый коаксиальный дымоход с заводской защитой от ветра.

Причины задувания котла через дымоход и способы их устранения

Газовый котёл задувает ветром что делать

Зачастую причиной остановки работы газового котла отопления становится задувание ветра. Его отключение зимой — очень неприятная неожиданность для хозяев. Это может привести не только к резкому уменьшению температуры внутри дома, но и повреждению всей системы отопления. Давайте разбираться с проблемой.

Если у вас неожиданно отключился газовый котёл, не паникуйте и для начал исключите такую возможную причину, как резкое снижение давления газа в трубопроводе. Для этого можно просто включить газовую печку и посмотреть на пламя, его размеры, проверить, насколько быстро закипит вода. Низкое давление газа на варочной поверхности вы заметите сразу. В таком случае ваш котёл точно не виноват, звоните газовщикам и выясняйте причины проблемы. Скорее всего, она не только у вас, но и у всех соседей.

Кроме того, проверьте и исключите вероятность утечки газа — с помощью мыльного раствора, который наносится губкой или пульверизатором на места соединений труб и деталей. Нет запаха и пузырей — значит дело не в утечке.

Впрочем, зачастую причина отключения газового котла очевидна — на улице ураганный ветер, который просто свистит в трубах. Сильные порывы ветра, попадая в дымоход, вызывают обратную тягу, срабатывает клапан, автоматически пламя в котле гаснет.

Задуматься над предотвращением риска задувания котла следует ещё на этапе установки дымохода. Очень желательно учитывать розу ветров в вашем регионе. Некорректно расположенный относительно зоны ветрового подпора дымоход существенно увеличивает риск задувания горелки котла. Неправильная конфигурация дымоходной трубы тоже может стать причиной этой проблемы.

Хорошо справляется с проблемой задувания котла дефлектор, установленный на оголовок дымоходной трубы. Это достаточно простая конструкция, которая усиливает тягу в дымоходе, защищает его от осадков и задувания. Обязательно задумайтесь об установке дефлектора или сразу приобретите конструкцию с таким устройством.

Важно! Действия с газовым оборудованием требуют согласования с соответствующей службой. Поэтому перед установкой дефлектора или флюгарки проконсультируйтесь с газовщиками

Причиной задувания газового котла также может стать прогорание металлической трубы дымохода. В результате прогорания образуется отверстие, куда поступает поток воздуха — появляются проблемы с дымоходом. Справиться с ситуацией поможет только замена трубы. В случае с коаксиальными дымоходами риска прогорания нет, ведь горячий газ из котла идёт по внутренней трубе, охлаждаясь встречным холодным воздушным потоком.

Ещё две возможных причины задувания газового котла:

Образование наледи на дымоходе. Такое часто случается с коаксиальными конструкциями при морозе -10..-15 °C. Горячий пар выходит из дымохода, постепенно охлаждается, превращается в капельки воды, конденсат, который замерзает, образуя сосульки и толстый слой льда. Это приводит к нарушению тяги, срабатывает автоматика котла, он останавливает работу. Если возникла такая проблема, не спешите сбивать ледяной нарост — можно повредить сам дымоход. Лучше всего снять оголовок, верхнюю часть трубы и занести в тёплое помещение, чтобы лёд растаял естественным путём. Перед тем, как снимать и чистить трубу, подачу газа необходимо перекрыть! Помогает избежать появления наледи дополнительное утепление дымохода;

Плохая вентиляция в котельной может привести к проблемам в работе атмосферного котла. Поможет обустройство принудительной вентиляции в помещении или отверстия с мелкой сеткой в нижней части двери котельной.

Помогают справиться с задуванием котла манипуляции с трубой — диаметр её выхода можно уменьшить или увеличить длину. Слишком большое отверстие дымохода можно уменьшить, установив дополнительную внутреннюю трубу. Помните, что вертикальный дымоход должен быть выше конька крыши на 50 см.

При этом слишком большая длина дымохода может стать причиной избыточной, сильной тяги, которая будет буквально отрывать пламя от горелки котла.

Настоятельно советуем вам в случае появления проблем в работе газового котла вызвать специалистов! Только они смогут точно определить причину отключения устройства и устранить её.

Установка дефлектора особой конструкции

Добиться максимального результата при решении проблемы, что делать, если гаснет котел при ветре, позволяет дефлектор особой конструкции – аэродинамическое приспособление, устанавливаемое на дымовую трубу.

В простом дефлекторе основную функцию выполняет наружная часть, на которую воздействует поток воздуха. В месте соприкосновения воздушного потока с поверхностью создается зона разрежения, увеличивающая тягу в дымоходном канале. В результате использования простого дефлектора можно увеличить тягу на 15-20 процентов. Следовательно, приспособления, имеющие более сложную конструкцию, будут намного эффективнее.

Сложные конструкции устанавливают в том случае, когда использование обычного дефлектора не помогает решить проблему задувания котла порывами ветра. Из большого количества дефлекторов сложной конструкции выделяют несколько типов, наиболее часто встречающихся на потребительском рынке:

  • Дефлектор «Дымовой зуб».
  • Дефлектор Григоровича.
  • Дефлектор «Воллер»
  • Дефлекторы шаровидные и вращающиеся.

Лидером среди перечисленных вариантов является дефлектор Григоровича, поэтому его устройству можно уделить немного внимания.

Это устройство имеет особую конструкцию, в ней каждый контур и элемент непосредственно относится к аэродинамике. Если простой дефлектор, установленный на трубе частного дома, выполнении в форме зонтика, то дефлектор Григоровича отличается наличием прямого и обратного конуса. За счет их взаимодействия создается необходимое движение воздушных потоков, в результате чего вокруг дымовой трубы создается зона пониженного давления. Разная температура потоков горячего и холодного воздуха многократно увеличивает тягу в дымоходном канале и предотвращает проникновение воздуха снаружи внутрь трубы.

Дефлекторы, имеющие сложную конструкцию, заставляют сильные порывы ветра работать на усиление тяги в дымоходном канале. В любом случае воздушные массы попадают под нижний конус дефлектора и подсасывают поток, идущий из котла в дымоходный канал.

Правильное расположение и устройство дымохода в сочетании с дефлектором сложной конструкции позволяет решить проблему обратной тяги. Благодаря этому порывы ветра любой силы не задувают пламя горелки отопительного котла, а лишь усиливают тягу в дымоходном канале, позволяя работать оборудованию более эффективно.

Особое внимание следует уделить ситуации, когда при ветре тухнет газовый котел, а запуск системы отопления не дает положительного результата. В этом случае причиной является недостаточно прогретый дымоход

Загородные дома и коттеджи посещаются редко, поэтому система отопления долгое время не функционирует. В результате первый запуск отопительного котла ни к чему не приводит, пламя горелки затухает через короткий промежуток времени. Многие хозяева задаются вопросом, в чем причина такого поведения газо-нагревательного оборудования. Дело в том, что отработанные продукты горения с большим затруднением поднимаются вверх по холодному дымоходу, а порыв ветра любой интенсивности не позволяет прогреть канал.

Чтобы решить проблему подобного типа, необходимо включить котел на минимальную мощность и прогреть дымоходный канал. При этом мощность устройства постепенно увеличивается до определенных значений. В результате горячий поток с продуктами горения топлива поднимаются вверх естественным образом.

Большое значение при создании эффективной отопительной системы в частном доме имеют грамотно выполненные расчеты при составлении проекта

Однако вентиляционная система в этом случае является не менее важной. Правильно выбранная конструкция и качественно выполненный монтаж вентиляции обеспечит бесперебойную работу отопительного оборудования

Экономия на вытяжке и вентиляции при решении вопроса, что сделать, чтобы не задувало котел, может дать отрицательный результат в процессе эксплуатации

Поэтому следует уделить особое внимание вентиляционной системе при планировке дома, иначе эстетичный внешний вид может обернуться дискомфортом в зимнее время. Возникнет необходимость переоборудовать дымоходный канал и подниматься на крышу в любой мороз

Изготовление дефлектора

Простейший вариант дефлектора типа устройства Вольперта-Григоровича довольно просто изготовить своими руками.

Требуемые инструменты и материалы

  1. Маркер или фломастер.
  2. Линейка.
  3. Ножницы по железу.
  4. Киянка.
  5. Деревянный брус для подставки.
  6. Заклёпочное устройство.
  7. Дрель, свёрла по металлу (или — сверлоконечные саморезы).
  8. Лист оцинкованного железа толщиной 0,3–0,5 мм (подойдёт алюминиевый лист или тонкая нержавеющая сталь).
  9. Металлические детали, какие есть в наличии: уголок, шпильки, толстая проволока и тому подобное.

Расчёт размеров и схема

Поскольку от точности изготовления зависит качество работы дефлектора, составление правильного чертежа — это самый важный этап во всём процессе. Размеры выверялись учёными в аэродинамической трубе, и им обязательно нужно следовать. Параметр, от которого нужно отталкиваться, — диаметр канала дымохода D.

Размеры всех деталей дефлектора задаются пропорционально его диаметру

Таблица: размеры деталей дефлектора относительно его диаметра
ПоказательКоэффициент поотношению диаметру
Нижний диаметр диффузора2
Верхний диаметр диффузора1,5
Высота диффузора1,5
Заглубление трубы внутрь диффузора0,15
высота конуса0,25
высота зонта0,25
высота обратного конуса0,25
Зазор между зонтом и диффузором0,25

Инструкция по изготовлению дефлектора своими руками

Переносим вычерченные детали на картон и делаем картонный макет. Проверяем соответствие деталей друг другу.

Вырезаем ножницами по железу все детали.

Точно так же скрепляем по очереди нижнюю и верхнюю тарелки-конусы.

Крепим ими к кожуху зонт.

  • Чтобы укрепить готовый дефлектор на дымоходе, лучше отделить верхнюю часть трубы и соединить её с дефлектором на земле. Крайне важна прочность этого соединения. Нагрузка от ветра на высоте будет велика и может помешать.
  • Дефлектор, возможно, получится не очень красивым, но вы сразу ощутите его полезность: тяга усилится на четверть, крыша будет защищена от искр. Труба с ним может быть ниже на полтора-два метра.

    Видео: самостоятельное изготовление дефлектора ЦАГИ

    При установке любого усилителя тяги вы сразу ощутите выгоду. Но сделанный собственными руками дефлектор ещё и создаст весомый повод, чтобы заставить вас гордиться собой.

    Реконструкция дымохода одно из решений проблемы

    Первым признаком постоянного угасания пламени является неправильная конструкция дымохода. Искать другие причины, почему задувает газовый напольный котел при ветре, при таком оборудовании нет смысла. Подача газа осуществляется под постоянным давлением, значительных перепадов почти не бывает. Какие-либо неисправности оборудования маловероятны, так как современные котлы отличаются надежностью и простотой конструкции. Например, котел Конорд известен своей надежностью и производительностью.

    Что касается дымохода, то здесь ответом на вопрос, почему задувает котел в частном доме, можно назвать такие моменты:

    Канал вентиляции отопительного прибора покрывается ледяной коркой. В результате этого нарушается циркуляция воздуха внутри дымохода и газовый котел не получает достаточного количества кислорода. Кроме того в канал дымохода попадает водяной пар, который охлаждается от слоя льда и образует конденсат. В свою очередь капли воды замерзают на стенках дымовой трубы и ледяная корка растет. Решить задачу, что сделать, чтобы не задувало газовый котел, помогает утепление дымоходного канала. В этом случае образующийся конденсат будет стекать по стенкам вниз.
    Возникновение обратной тяги из-за недостаточной высоты дымовой трубы. Усиливающийся или меняющий направление ветер создает сильный воздушный поток, который попадает внутрь дымоходного канала и доходит до камеры сгорания топлива. В результате этого пламя в горелке затухает

    Такая ситуация считается более опасной, поэтому важно знать, что делать, когда задувает котел при сильном ветре. Обратное движение теплого воздуха захватывает попутно продукты горения, следовательно, они попадают в котел и загрязняют камеру сгорания

    Не исключено попадание вредных газов в жилое помещение.

    Вентиляционный дефлектор на вытяжную трубу – конструкция и принцип работы

    В отличие от дымоходов, оголовки вертикальных шахт вытяжной вентиляции всегда накрываются зонтами. Попадание осадков внутрь воздуховода нежелательно – воде некуда деваться. Суть проблемы: защитный колпак создает дополнительное аэродинамическое сопротивление воздушному потоку. Работа естественной вытяжки ухудшается, а при недостатке тяги прекращается вовсе.

    Вопрос решается так: на конец трубы вместо традиционного «грибка» монтируется вентиляционный дефлектор. Установка выполняется своими руками, но сначала нужно подобрать конструкцию вытяжного устройства.

    • 1 Зачем нужен дефлектор
    • 2 Разновидности насадок
      • 2.1 Устройство колпаков типа ЦАГИ
      • 2.2 Статический зонт Волпера
      • 2.3 Н-образная насадка
      • 2.4 Турбодефлекторы и флюгеры
      • 2.5 Колпак принудительного действия Astato
    • 3 Какой дефлектор выбрать
    • 4 Изготовление своими силами
    • 5 Можно ли устанавливать на дымоход

    Зачем нужен дефлектор

    Для лучшего понимания вопроса приведем данные из справочной литературы. Величина местного сопротивления потоку воздуха в системах вентиляции характеризуется безразмерным коэффициентом ξ. Чем больше его значение, тем сильнее фасонный элемент – зонт, колено, шибер — замедляет движение газов по трубопроводу.

    Применительно к нашим случаям коэффициент составляет:

    • на выходе воздушного потока из открытой трубы любого диаметра ξ = 1;
    • если канал накрыт классическим колпаком, ξ = 1.3—1.5;
    • на трубе установлен зонт Григоровича с диффузором (расширение сечения), ξ = 0.8;
    • насадка Волпера цилиндрическая либо звездообразная «Шенард», ξ = 1;
    • дефлектор типа ЦАГИ, ξ = 0.6.

    Примечание. Здесь нет ошибки – даже при свободном выбросе из шахты воздушная струя преодолевает местное сопротивление от внезапного расширения. Источник: «Справочник по теплоснабжению и вентиляции», издание 1976 г.

    Итак, дефлектор — это насадка, которая под действием ветра создает разрежение на выходе из вертикального вентканала и таким образом уменьшает аэродинамическое сопротивление потоку. То есть, выступает усилителем тяги.

    Вдобавок вытяжное устройство решает такие задачи:

    • защищает воздуховод от осадков;
    • не позволяет ветру задувать внутрь трубы;
    • препятствует возникновению обратной тяги (опрокидывания).

    Принцип работы любого дефлектора основан на двух эффектах: разрежение от ветровой нагрузки и эжекция (увлечение) медленного потока газов более быстрым. Хотя некоторые зарубежные производители реализуют механическое побуждение – попросту оснащают зонт электрическим вентилятором. Рассмотрим устройство каждой конструкции по отдельности.

    В этом ракурсе хорошо видно, что сечение нижнего патрубка насадки не уменьшается, значит, скорость и давление газов не изменяется

    Замечание. В интернете работу подобных колпаков часто объясняют действием закона Бернулли либо эффекта Вентури. Оба физических явления предполагают сужение воздуховода, ускорение потока и падение давления. В действительности дефлекторы не уменьшают сечение канала (смотрите выше на фото) — разрежение создается исключительно силой ветра.

    Разновидности насадок

    Сейчас можно приобрести в готовом виде либо сделать самостоятельно следующие виды колпаков – усилителей тяги:

    • дефлектор ЦАГИ с расширением вентканала — диффузором;
    • цилиндрический «грибок» Волпера;
    • Н-образный коллектор из труб;
    • колпак – флюгер (в народе — «подхалим»);
    • сферическая ротационная насадка – так называемый турбодефлектор;
    • статодинамическое открытое устройство типа «Astato».

    Включать в список и рассматривать обычные зонтики бессмысленно – подобные изделия не улучшают тягу, лишь прикрывают срез трубы от дождя.

    Устройство колпаков типа ЦАГИ

    Данная конструкция разработана в период СССР профильным НИИ (научным институтом). Дефлектор состоит из таких деталей (показаны на чертеже):

    • нижний стакан с диффузором (расширением) на конце;
    • внешний корпус – обечайка из кровельной стали цилиндрической формы;
    • крышка в виде зонта;
    • стойки крепления крышки из металлических полос.

    Схема работы изделия проста: ветровой обдув корпуса с любой стороны создает зону разрежения над открытым сверху диффузором. Поступающие из шахты отработанные газы увлекаются этим разрежением, выходят наружу и подхватываются ветром – срабатывает принцип эжекции.

    Ниже в таблице представлены характеристики типовых дефлекторов ЦАГИ – размеры, производительность в зависимости от скорости ветрового потока.

    Замечание. Производительность указана без учета сопротивления системы воздуховодов, пересекающих крышу. Реальный объем вытяжки зависит от высоты подъема трубы и перепада температур внутреннего/наружного воздуха.

    Из всех статичных усилителей тяги колпак ЦАГИ признан наиболее эффективным, невзирая на почтенный возраст разработки. Плюсы конструкции:

    • простота в изготовлении, установке;
    • максимальная защита от попадания дождя и снега, опрокидывания тяги;
    • надежность, отсутствие вращающихся деталей;
    • направление ветровых потоков не играет роли;
    • наименьший коэффициент сопротивления (ξ = 0.6).

    Недостаток дефлектора – зависимость от скорости ветра. Если потоки движутся медленнее 2 м/с, эффективность устройства стремится к нулю. Впрочем, штиль оказывает негативное влияние на работу любой насадки, призванной усиливать естественную тягу в вентканале.

    Колпак работает благодаря ветровому подпору — над срезом воздуховода возникает разрежение

    Обратите внимание: в современных версиях ЦАГИ заводского изготовления предусматривается утепление нижнего стакана, если колпак крепится к крышной сэндвич-трубе. Под «грибком» мы видим юбку, хотя проходное сечение канала не уменьшается.

    Статический зонт Волпера

    Этот дефлектор скорее является ветрозащитным устройством, нежели усилителем природной тяги. Хотя потери давления на выходе потока насадка успешно компенсирует. Конструкция включает следующие элементы:

    • нижний патрубок (стакан);
    • верхний цилиндрический стакан с вогнутыми стенками;
    • конусный зонт;
    • соединительные полосы.

    Колпак устанавливается на воздуховод круглого сечения либо прямоугольную шахту через переходник. Как работает дефлектор вентиляции Волпера:

    1. Прямые ветровые потоки отражаются вверх и вниз вогнутой поверхностью верхней обечайки.
    2. Струя, проходящая между зонтом и срезом стакана, создает область пониженного давления внутри корпуса.
    3. Вытяжной воздух меняет направление движения – вытекает сквозь зазор под «юбкой».

    Насадка уступает конструкции ЦАГИ в эффективности, зато лучше защищает воздуховод от порывов ветра. Сделать изогнутый стакан сложнее, потому домашние умельцы попросту изготавливают конус. Для повышения производительности под зонтом ставится аналогичная тарелка в зеркальном отражении, как показано на видео:

    Н-образная насадка

    Эта оригинальная конструкция представляет собой узел из труб в виде русской буквы «Н», вытяжка подключена к середине воображаемой перекладины. С какой бы стороны ветер ни задул в открытые трубы – сверху или снизу – более быстрый поток станет эжектировать (увлекать за собой) воздушную струю из вентиляционного стояка.

    Преимущество Н-образного дефлектора – почти стопроцентная защита от задувания ветра, обратной тяги, попадания влаги и обмерзания. Указанные плюсы перечеркиваются не менее существенными минусами:

    1. Проблемы с аэродинамикой — чтобы выйти на улицу, воздух преодолевает 2 поворота 90°. Потери компенсирует поток ветра, но сила тяги возрастает минимально. Отсюда низкая производительность вытяжной насадки.
    2. Приспособление довольно громоздкое, поэтому крепеж на трубе затруднен.
    3. Н-дефлектор не слишком красиво выглядит. Представьте ситуацию, когда на кровлю выведены 2—3 вентканала с подобными колпаками.

    Колпак максимально предохраняет от задувания и опрокидывания тяги, но сам создает немалое сопротивление вытекающим газам

    Дополнение. Мы пропустили 1 преимущество насадки – ее несложно собрать своими руками из готовых тройников. Применить изделие можно для вентиляции подсобных строений, например, бани или теплого сарая.

    Турбодефлекторы и флюгеры

    Мы объединили эти 2 разновидности насадок в один раздел из-за схожести принципа действия:

    1. Сферический ротационный дефлектор с множественными полукруглыми лопастями вращается силой ветра. Над оголовком трубы (внутри шара) образуется разрежение, эффективность вытяжки возрастает.
    2. Флюгер с крылом всегда поворачивается «спиной» к ветру, предотвращая задувание внутрь ствола. За корпусом насадки образуется зона пониженного давления (аэродинамическая тень), воздушная струя охотнее покидает вертикальный канал.

    Опорный элемент колпака-флюгера частично перекрывает проходное сечение вентканала

    По эффективности динамические колпаки выигрывают у статических, но имеют ряд особенностей эксплуатации:

    • в безветренную погоду турбодефлекторы и «подхалимы» не крутятся, соответственно, тягу не улучшают;
    • узел вращения – подшипник либо втулка – требует обслуживания (смазки), зимой рискует обмерзнуть;
    • заклинивший флюгер может заломить резким порывом ветра;
    • насадки слабо защищают от косого дождя либо снега.

    Справка. Цены флюгеров и ротационных дефлекторов выше, чем статических насадок. Пример: заводской зонт ЦАГИ, сделанный по серии 5.904.51, стоит от 23 у. е., турбодефлектор – 38 у. е. Вывод: за эффективность придется доплачивать, плюс ежегодно забираться на крышу и обслуживать вентиляционный девайс.

    Как работает флюгер сравнительно с открытой трубой, смотрите на видео:

    Колпак принудительного действия Astato

    Это единственный тип дефлектора, функционирующий при любой погоде, включая полный штиль. Насадка выполнена из двух усеченных конусов, повернутых вершинами друг к другу. Верхняя часть снабжена зонтом и осевым электровентилятором. Сбоку проем закрыт алюминиевой сеткой от птиц.

    Как работает дефлектор французского бренда Astato:

    1. В ветреную погоду колпак действует как статичный усилитель – проходящий между конусами поток подхватывает воздух, поднимающийся по вытяжному стволу. Вентилятор отключен.
    2. Когда ветер затихает, срабатывает датчик давления – прессостат. Он подает сигнал блоку управления EOL.
    3. Контроллер запускает вентилятор на нужную скорость (всего их две). Начинается принудительная вытяжка из канала.

    Примечание. Порог срабатывания датчика настраивается пользователем. Cтатодинамическое устройство может работать без дорогой автоматики – от реле температуры либо включаться ручным способом.

    Единственный недостаток активного дефлектора Astato – космическая по нашим меркам цена. Чтобы купить насадку минимального диаметра 160 мм, придется уплатить 1395 евро. Хотите автоматизировать работу принудительной вытяжки — добавьте сюда стоимость блока EOL – еще 1520 евро.

    Какой дефлектор выбрать

    Если вы хотите установить колпак – усилитель тяги с минимальными затратами и не обслуживать изделие в процессе эксплуатации, рекомендуем остановиться на статичных моделях – дефлекторе Волпера либо ЦАГИ. Последний вариант предпочтительнее для собственноручного изготовления.

    Совет. Размер насадки выбирайте по диаметру вытяжного ствола. Если из дома выведена прямоугольная шахта, подбор делается по эквивалентному круглому сечению. То есть, необходимо сделать расчет поперечника канала, потом взять круг аналогичной площади. При установке используется адаптер.

    Рекомендации по выбору различных дефлекторов:

    1. При недостатке либо отсутствии тяги лучше ставить динамические версии колпаков – ротационный или флюгер.
    2. Покупая вращающуюся насадку, не гонитесь за дешевизной. В недорогих изделиях применен открытый шарнир – обычная втулка, которая замерзнет зимой. Подбирайте флюгер или турбодефлектор с закрытым подшипником.
    3. Н-образный колпак пригодится в местности с постоянными сильными ветрами. В остальных случаях лучше брать ЦАГИ.

    Дефлекторы Astato приобретайте по желанию – усилитель будет работать в любых условиях. Но помните: движущиеся части насадки нужно периодически обслуживать.

    Изготовление своими силами

    Технологию сборки колпака предлагаем пояснить на примере насадки типа ЦАГИ. Детали вырезаются из оцинкованной стали толщиной 0.5 мм, между собой скрепляются заклепками или болтами с гайками. Конструкция вытяжного элемента представлена на чертеже.

    Для изготовления понадобится обычный слесарный инструмент:

    • молоток, киянка;
    • ножницы по металлу;
    • дрель электрическая;
    • тиски;
    • приспособления для разметки – чертилка, рулетка, карандаш.

    Ниже в таблице указаны размеры деталей дефлектора и окончательный вес изделия.

    Справка. Наиболее «ходовые» диаметры вентиляционных каналов – 100 либо 110 мм, когда вытяжка сделана пластиковой канализационной трубой.

    Алгоритм сборки следующий. По разверткам вырезаем ножницами заготовки зонта, диффузора и обечайки, скрепляем между собой заклепками. Раскрой обечайки не представляет сложности, развертки диффузора и зонта показаны на чертежах.

    Раскрой нижнего стакана — расширяющегося диффузора

    Готовый дефлектор насаживается на оголовок, нижний патрубок стягивается хомутом. На квадратную шахту придется сделать или купить переходник, чей фланец прикрепляется к торцу трубы.

    Можно ли устанавливать на дымоход

    Установкой дефлектора незадачливые домовладельцы пытаются решить проблему недостатка тяги. Такое случается, когда дымоходная труба сделана неправильно – оголовок попал в зону ветрового подпора крыши, поднят на малую высоту либо сосед построил рядом высокое здание.

    Лучший решение при недостаточной тяге — поднять дымоотвод на нужную высоту. Почему на оголовок нежелательно нахлобучивать различные насадки:

    1. Запрещается ставить зонты и прочие вытяжные устройства на трубы, отводящие продукты горения газовых котлов. Это требования правил безопасности.
    2. Печки и твердотопливные котлы при горении выделяют сажу, оседающую на внутренних поверхностях дымоходов и колпаков. Дефлектор придется чистить, особенно крутящийся.
    3. Внизу правильно построенного дымового канала предусмотрен карман для сбора конденсата и лишней влаги. Закрывать трубу от осадков бессмысленно, достаточно прикрепить на конце сопло, защищающее утеплитель сэндвича.

    Оголовки печных газоходов допускается оснащать зонтиками, но турбодефлектор там точно не нужен. Тема монтажа колпаков на дымоотводные каналы подробно раскрыта в отдельном материале.

    Читайте также:  Всё выполнено из металла
    Ссылка на основную публикацию