При помощи света и цвета

Свет и тень
Урок фотографии N7

Главный инструмент фотографа — не фотоаппарат, а свет. Это он рисует на пленке или матрице пейзажи, портреты, натюрморты. С помощью света решаются три фотографические задачи: техническая, изобразительная и композиционная. Техническая задача — получение изображения — решается благодаря изобретению фотоаппарата: строго отмеренное количество определенного по спектральному составу света направляется через объектив в нужное место кадра, где и возникают темные или светлые участки — света и тени.

Для решения изобразительной задачи мало просто залить светом пространство, попавшее в поле видоискателя. С помощью света на плоскости снимка можно изобразить, то есть нарисовать, окружающий нас трехмерный мир. Свет позволяет передать округлость яблока и нежность кожи ребенка, графичность кованой решетки и ноздреватость гранитной мостовой, красоту хрустального бокала и блеск никелированной поверхности столового ножа, нежные краски туманного утра и кричащие контрасты ночного города. Композиционную задачу можно решить с помощью теней, порождаемых светом. Иногда тень проста и определенна. Она сама по себе является объектом съемки и сутью снимка (фото 2). Иногда тень образует необычайно витиеватые линии, которые, соединяясь с фоном, могут вызывать у зрителя сложные ассоциации, многократно усиливая эмоциональное воздействие фотографии (фото 3). Можно также использовать тень как композиционный элемент снимка, чтобы, к примеру, соединить в единое целое его разрозненные части и придать ему композиционную завершенность (фото 4).

Свет может быть направлен на объект съемки отовсюду: сверху и снизу, справа и слева, спереди и сзади. При этом каждый раз создается присущий только этому направлению света теневой рисунок, влияющий на восприятие фотографии зрителем.

Направления света

Свет различается, в зависимости от его направления на объект съемки:
— задний (или прямой) — направлен на объект съемки из-за спины фотографа.
— верхний — направлен на объект съемки сверху. нижний — направлен на объект съемки снизу. верхнебоковой — направлен на объект съемки под углом справа или слева от камеры.
— боковой — направлен на объект съемки строго сбоку. заднебоковой — направлен на объект съемки под углом сзади и справа или слева от камеры.
— контровой — направлен в сторону объектива камеры.

Виды света

Очень часто для создания снимка, как на улице, так и в помещениях, используется сразу несколько источников света. В этом случае каждый их них имеет свое назначение и наименование
— рисующий — основной вид света (все прочие играют вспомогательную роль). Это он образует тени, определяющие светотеневое решение снимка. Рисующий свет обычно создается одним источником света и может быть направлен на объект съемки отовсюду.
— заполняющий — с его помощью подсвечивают тени, придавая им легкость и прозрачность. Без заполняющего света в тенях могут образоваться абсолютно черные зоны. Иногда это бывает уместно, но чаще в тенях должны читаться хоть какие-то детали.
— контровой — направляется на объект сзади и поддерживает рисующий свет, создавая в освещенных им зонах дополнительные блики.
В случаях, когда яркость объекта и яркость фона совпадают, контровой свет помогает оторвать объект от фона.
— контурный (или контражур) — разновидность контрового света. Образуется источником, установленным точно за головой модели и направленным в объектив фотокамеры. Такой свет рисует вокруг объекта съемки яркий пересвеченный контур, лишенный деталей (фото 3).
— фоновый — применяется для освещения фона, для создания на нем светотеневого рисунка, поддерживающего рисующий свет.

Качества света

— мягкий (или рассеянный) — не образует резких теней (фото 7, 12). Это свет пасмурного дня или прикрытого набежавшей тучей солнца (фото 1), свет, отраженный от белой стены или фотозонтика (полупрозрачного, работающего на просвет, или со светоотражающей внутренней поверхностью, работающего на отражение), свет софтбоксов (специальных осветительных приборов, дающих мягкий свет).

— жесткий (или направленный) — образует резко очерченные, глубокие тени (см. фото 2 — 4). Это свет солнца или осветительных приборов с малым размером светящегося тела: ламп накаливания, уличных фонарей, спотов (специальных источников направленного жесткого света, дающих очень узкий пучок лучей).

Искусственный свет

На улице есть только один источник света — солнце, и управлять им фотограф не может, в отличие от студии, где со светом можно делать все что угодно. Работая в студии, я стараюсь освещать кадр так, чтобы повторить воображаемое естественное освещение. Например, имитирую свет солнца, полоски теней от жалюзи или свет из окна. При таком подходе к работе со светом удается снимать «правдивые» фотографии, рассматривая которые зритель испытывает радость узнавания (фото 6).

Для получения рисующего света можно использовать все виды осветительных приборов, однако людей удобнее снимать с импульсными источниками, потому что съемка подвижных объектов требует коротких выдержек. Вспышки выдают мощный импульс за сотые доли секунды, это позволяет гарантированно избежать шевеленки. Натюрморты, напротив, лучше освещать приборами с галогеновыми лампочками. Постоянно горящий свет дает возможность тщательно, не торопясь, выстраивать композицию, а длительность выдержки в этом случае не может повлиять на результат съемки.

Мягкий свет не образует резко очерченных, глубоких теней. Такой свет можно получить, когда светящееся тело источника света имеет излучающую площадь настолько большую, что она как бы охватывает объект и справа и слева. Один и тот же софтбокс или зонтик может работать очень мягко, если его подвинуть вплотную к объекту съемки, и очень жестко, если отодвинуть на большое расстояние от него.

Для получения мягкого света вовсе не обязательно пользоваться дорогими софтбоксами. Иногда можно получить очень мягкий свет, направив вспышку в потолок или на белую стену. Я часто пользуюсь для этого листами пенопласта, которые хорошо рассеивают свет, не меняя его цветовой температуры. Очень удобны складывающиеся лайтдиски (натянутые на стальную пружину отражатели света). Они также служат отличным источником мягкого рассеянного света и в студии и на улице. Мягко работает также свет любого окна городской квартиры, если не отходить от него дальше одного метра (фото 7).

Источником жесткого, направленного света может служить любой источник света с маленьким светящимся телом: лампочка накаливания, свечка, фонарик, вспышка, галогеновая фотолампа. Чем дальше от объекта съемки я ставлю источник света, тем жестче он работает. Но в практической студийной съемке трудно пользоваться открытыми источниками света. Их лучи, кроме полезного света, излучают много рассеянного, который отражается от стен студии или от других предметов, образуя паразитные тени или подсвечивая те, которые фотограф хотел бы видеть очень глубокими. Поэтому удобнее пользоваться профессиональной аппаратурой, снабженной светоограничительными шторками, сотовыми фильтрами или тубусами. Эти приспособления позволяют направить жесткий свет только туда, где он должен оказаться в соответствии с композиционным замыслом. Существуют также специальные источники направленного жесткого света, дающие очень узкий пучок лучей, — споты (фото 5).

Уличное освещение

Не всегда светотеневое решение кадра, диктуемое сложившимися условиями, удачно решает изобразительную задачу. Предположим, понравившийся объект я увидел в серый пасмурный день, когда ровное, почти бестеневое освещение не позволяет передать на фотографии ни рельеф местности, ни фактуру материала, которым отделаны стены домов, ни округлость колонн, ни цвета мозаичных украшений. Придется возвращаться сюда еще раз, но когда, в какое время дня? Солнце, описывая на небосводе дугу, постоянно меняет условия освещения. Ранним утром свет стелется вдоль поверхности земли, преодолевая толщу запыленной атмосферы. При этом он рассеивается и окрашивает воздух в теплые красные и желтые тона. Часов в десять утра, когда солнце поднимается над линией горизонта градусов на тридцать, появляются тени, направленные по диагонали вниз. С полудня до двух часов дня солнце в зените, в это время светотеневой рисунок, пожалуй, самый неудачный: вертикальные предметы длинных теней не образуют. Есть правда исключение из этого правила — стены домов подставляют солнцу свои бока так, что любой карниз, любая крошка цемента, выступающая над ровной поверхностью, образует глубокие, черные тени. Если грамотно этим воспользоваться, то можно получить весьма впечатляющие фотографии (фото 8). Затем солнце опускается, повторяя весь процесс изменения светотеневого рисунка, только направление теней на объекте меняется на противоположное.

Управлять светом солнца нам не дано. С этим приходится мириться, но это вовсе не значит, что съемка на натуре — простая фиксация момента. Начинать надо с выбора времени съемки. От него зависит: на какой высоте будет солнце, под каким углом будут падать тени, будет ли утренняя дымка смягчать и размывать объекты заднего плана. Даже в течение одного дня нельзя снять две одинаковые картинки. Я уж не говорю о влиянии погоды на условия освещения. Свет открытого, прямого солнца резок и бескомпромиссен, но свет того же солнца будет заметно рассеян простым наличием облаков на небе — они служат хорошими отражателями. Тучка, прикрывшая солнце, может сделать этот свет мягким, а большая грозовая туча — почти бестеневым (фото 1).

Свет пасмурного дня и свет солнца из-за линии горизонта аморфны и не образуют светотени (фото 12). Свет зависит не только от времени дня, но и от времени года, от того, идет дождь или снег. Воистину, плохой погоды не бывает — бывают плохие фотографы. Главный инструмент воздействия на уличное освещение — ноги. Не удивляйтесь, это они позволяют выбрать правильное направление съемки. Свет, как и в студии, может быть задним, заднебоковым, боковым, контровым, но если в студии я перемещаю лампы, то со светилом такие вольности не проходят. Приходится самому перемещаться в пространстве, меняя направление света в кадре.

Если солнце у фотографа за спиной, жди плоской картинки. В большинстве случаев это плохо — не выявляются объемы предметов. Но иногда можно очень эффектно использовать собственную тень (фото 10) или тени рядом стоящих людей.

Контровой свет солнца отличается от студийного. Света и в этом случае занимают меньшую часть площади снимка, создавая общую темную тональность. Однако на улице очень заметно светорассеяние и переотражение лучей солнца. Воздушная дымка или туман эффектно выделяются на более темных фонах, тонально подчеркивая глубину пространства, а светорассеяние позволяет получить необходимую проработку затененных деталей. Очень красивы бывают тени, образованные контровиком. Контуры и силуэты помогают созданию лаконичных и броских снимков. Хороши в контровом свете блестящие поверхности воды, полированного металла, стекла, различных полимерных пленок, каменная отделка архитектурных сооружений, морская галька, облака на закате и т. п. (фото 9).

Если повернуться к солнцу боком, то характер освещения переменится. Тени будут исправно работать на фотографа, но картинка станет намного светлее, потому что освещенных солнцем плоскостей станет намного больше, чем при контровом освещении. Цвета станут насыщенными. Найти гармоничное сочетание светов и теней при таком освещении довольно сложно. Свет и тень вступают в извечный спор — кто важнее для искусства (фото 11).

Свет в композиции

Уравновесить света и тени мне помогают композиционные «весы». Они всегда при мне и, рассматривая фотографии, я мысленно взвешиваю их содержимое. Понятно, что темные пятна тяжелее светлых, а красный предмет перевесит зеленый. Мне нравится, когда предметы на фотографии подчиняются законам тяготения, когда внутри каждого снимка царят гармония и равновесие. Выстраивая снимок, стараюсь не располагать все объекты в одной половине кадра, иначе снимок развалится — если верх фотографии будет очень темным, а низ светлым, зрителю инстинктивно захочется перевернуть его. Стоит только включить внутренние «весы» и проанализировать разбросанные по картинке света и тени, как обнаружится, что многие требуют ампутации свободных от смысловой нагрузки пространств. При этом снимки хуже не становятся. Однако кадрировка, как правило, приводит к уменьшению использованной площади негатива или матрицы и тем самым снижает его качество. При увеличении снимка падает резкость, вырастает зернистость. Поэтому уравновешивать кадр лучше в процессе съемки.

Когда я учился снимать, я мысленно представлял себе, что плоскость снимка сбалансирована на кончике иглы. Достаточно положить на любую точку этой воображаемой конструкции гирьку, как для удержания равновесия придется использовать противовес. Таким противовесом может быть не только предмет, но и тень от него (фото 15).

На этапе ученичества имеет смысл поснимать натюрморты — мертвая натура позволяет, не торопясь, продумать все элементы композиции. Снимая натюрморт, следует прежде всего найти место для главного предмета, только после этого можно заполнять свободное пространство снимка чем-то другим. Наиболее простым решением может показаться центральное расположение главного объекта или симметричная композиция. Однако симметрия убивает движение в кадре, природа симметрии не любит. Продуманное нарушение симметричного композиционного равновесия может придать снимку дополнительный смысл, волнующую эмоциональность или загадочность. Такой снимок должен вызывать неосознанное беспокойство у зрителя, задерживая тем самым на себе его внимание (фото 13).

От хорошего снимка невозможно отрезать ни одного миллиметра, не причинив ему вреда. В нем все должно быть взаимосвязано, как в хорошем часовом механизме, — вынешь любую деталь, и часы станут безделушкой. Однако анализ светотеневого рисунка фотографий не всегда бывает прост. Многие картинки прекрасно живут без ярко выраженных главных теней или главных световых акцентов. Красивая фотография впо-лне может оказаться сотканной из множества равнозначных по площади и яркости светов и теней (фото 14). В этом случае фотографу не остается ничего другого, как упорядочить эту мозаику, навести в ней порядок, используя все богатство доступных ему композиционных приемов: верхние или нижние ракурсы, линейную или тональную перспективу, точки золотого сечения, глубину резкости, выделение чего-то важного с помощью цвета или наоборот обесцвечивания. Но главное все же — умение видеть света и тени вокруг себя и научиться управлять ими.

Лекция 2. Как мы видим и воспринимаем цвет

Лучи света, проходя через зрачок в радужной оболочке и расположенный за ним хрусталик, попадают на сетчатку. Она состоит из двух слоев: наружного, или пигментного, и внутреннего, или нервного, представляет собой разрастание зрительного нерва, связывающего глаз с мозгом. Именно там и возникают зрительные, в том числе цветовые, ощущения.

Наш глаз воспринимает какой-либо цвет как белый, когда все цвета спектра полностью отражаются от освещенной поверхности. Тело или пространство воспринимается черным при отсутствии света. Частичное отражение тех или иных цветовых монохроматических потоков (при поглощении остальных цветов спектра) определяет для нашего зрения цвет отражающей поверхности.

Так, отражение красных лучей создает впечатление красного цвета отражающей поверхности. При этом зеленые, голубые, синие, фиолетовые цвета спектра поглощаются. Глаз человека устроен так, что он прекрасно адаптируется к темноте и свету, к различению предметов на расстоянии, как близком, так и далеком. Хрусталик глаза работает как система автофокусировки фотоаппарата.

Глаз настолько чувствителен к свету, что при абсолютно прозрачной атмосфере мог бы различать огонек свечи на расстоянии 200 км. Глаз здорового человека с развитым цветотоновым зрением способен различать в окружающем мире (при достаточно ярком освещении объектов) около 30 000 оттенков цветов. Многие цветовые атласы содержат в три раза меньшее количество оттенков цветов (даже с учетом того, что в них приводятся образцы одного и того же оттенка цвета — матовые, полуматовые и глянцевые).

Важной особенностью цветового зрения является то, что, определив и запомнив цвет какого-либо объекта, человек, независимо от условий освещения, воспринимает (а точнее, представляет благодаря зрительной цветовой памяти) этот цвет как постоянный, присущий данному объекту. Например, красный цвет, который при слабом освещении объективно видится как темно-красный, серо-красный, коричневато-красный, остается для объекта восприятия все равно красным.

Читайте также:  Традиционный камин на дровах

Это помогает человеку запоминать объекты по их цвету и ориентироваться среди них в быту. Но художник, занимаясь живописью, безусловно, отражает в своем произведении (пейзаже, натюрморте, портрете, жанровой картине) реальные изменения цвета изображаемых объектов в зависимости от характера и интенсивности их освещения. Архитекторы, художники декоративно-прикладного искусства, дизайнеры также учитывают в своем творчестве изменения цвета (цветов) создаваемых по их проектам объектов при их реальном восприятии людьми, созерцающими эти объекты в разных условиях освещения.

Трехкомпонентная теория цветового зрения Г. Гельмгольца базируется на идее ученого Томаса Юнга о трех родах нервных волокон, воспринимающих три основные цвета: красный, зеленый и синий (точнее — сине-фиолетовый). Простой желтый значительно возбуждает зрительные волокна, ощущающие красный и зеленый цвета, но слабо — фиолетовые. Простой зеленый сильно возбуждает зеленоощущающие волокна и слабо — остальные два типа и т. д. Тот или иной сложный оттенок цвета зависит, по-видимому, от разной степени возбуждения этих трех типов волокон. А равномерное возбуждение всех типов дает ощущение белого цвета. Цветовая система смешения цветов из трех основных цветовых тонов геометрически изображается в виде равностороннего треугольника, в углах которого обозначены три первичных цвета: красный, зеленый, синий (сине-фиолетовый).

Аддитивное смешение цветов — метод синтеза цвета , основанный на сложении цветов непосредственно излучающих объектов. Аддитивное смешение соответствует смешению лучей света. Современным стандартом для аддитивного смешения цветов является модель цветового пространства RGB , где основными цветами являются красный ( R ed) , зелёный ( G reen) и синий ( B lue) . Аддитивное смешение по модели RGB используется в компьютерных мониторах и телевизионных экранах, цветное изображение на которых получается из красных, зелёных и синих точек люминофора или светоматрицы. При отсутствии света нет никакого цвета — чёрный , максимальное смешение даёт белый .

Субтрактивное смешение – противоположность аддитивному смешению цветов. Субтрактивное смешение соответствует смешению красок. В этом случае цвет формируется за счёт вычитания определённых цветов из белого света. Тремя типичными базовыми цветами явлются сине-зелёный (Cyan) , маджента (Magenta) и жёлтый (Yellow) . Модель субтрактивного синтеза CMYK (Cyan, Magenta, Yellow, Key color) широко применяется в полиграфии.

Основоположник научного цветоведения И. Ньютон первым предложил реально существующий линейный спектр цветов. Цветовой круг Ньютона включал семь последовательно расположенных и радиально ориентированных секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового цветов. При добавлении неспектрального цвета — пурпурного — получалась 8-секторная двухмерная цветовая модель хроматических цветов.

Позднее другими специалистами в области цветоведения на основе цветового круга И. Ньютона (с включением пурпурного цвета) предлагались 12-секторные, 24-секторные и 48-секторные цветовые круги. В качестве стандартного цветового круга принят 24-секторный круг хроматических тонов, образованный путем членения на три каждого из семи основных спектральных цветов и пурпурного цвета.

Известна, помимо двенадцатиричных, также оригинальная десятичная цветовая система — 100-секторный цветовой круг Манселла. В этом круге 10 областей (интервалов). Интервал одного цветового тона включает 11 радиусов цветового тона (от 0 до 10), последний 10-й совпадает с начальным 0-м следующего интервала. По радиусу 5-го цветового тона расположен основной тон каждого интервала, по 10-м радиусам — крайние границы цвета каждого интервала. Шкала насыщенности располагается вдоль радиуса цветового тона. Она имеет определенное число уровней — от наиболее насыщенного цвета на краю круга до наименее насыщенного — к центру круга. Таким образом, цветовой круг (цветовая система) Манселла демонстрирует в широком диапазоне цветность 100 оттенков цветовых тонов: сочетание цветового тона и насыщенности. На основе этой цветовой системы разработаны и выпущены цветовые атласы.

Как и в других стандартизированных системах (содержащих сотни образцов цвета), цвета обозначаются числом, или кодом. В международной практике принят метод определения цвета, разработанный Международной комиссией по освещению (МКО) — Commission International de l’Eclairage. Он основан на том факте, что относительные количества трех стандартных первичных цветов (по Г. Гельмгольцу) — красного, синего и зеленого. График МКО также позволяет осуществлять отбор дополнительных друг к другу цветов и может показать пределы высшей чистоты цветов нефлуоресцирующих пигментов и красителей для сравнения с чистотой (насыщенностью) реально доступных красок.

Позже были разработаны пространственные цветовые модели (трехмерные). Самой первой трехмерной моделью был цветовой шар Отто Рунге. Помимо этой пространственной модели предлагались разными специалистами в области цветоведения и другие модели: цветовой куб Хикетье, многогранник Кюпперса, цветовой цилиндр Манселла, двойной конус Оствальда и т. д.

При помощи света и цвета

Ежедневно на протяжении всей своей жизни мы неразрывно связаны со светом, что оказывает влияние не только на наше зрительное восприятие окружающего мира, но и на здоровье, самочувствие, продуктивность и настроение.

С давних времен по своей природе человек с восходом солнца просыпается, когда солнце находится в своём пике – работает, а с наступлением ночи готовится ко сну. Это не случайно и взаимосвязано со светом. Каким образом? Для этого необходимо рассмотреть характеристики света

Световое излучение характеризуется такими параметрами, как световой поток, сила света, яркость, освещенность и др., но подробней хотелось бы остановиться на спектральных характеристиках и их взаимосвязи с природой.

Свет – это видимая область электромагнитного излучения в диапазоне длин волн от 380 нм до 780 нм. Именно в этом диапазоне оптическое излучение способно возбуждать сетчатку глаза человека и создавать зрительный образ.

Помимо видимой области излучения в светотехнике рассматривают также ультрафиолетовое (длина волны от 1 нм до 380 нм) и инфракрасное излучение (длина волны от 780 нм до 1 мк).

Видимое излучение с разной длиной волны воспринимаются глазом как разные цвета:

Таблица 1. Длины волн различных цветов

Длина волны

от 380 нм до 450 нм

от 450 нм до 480 нм

Границы цветов приблизительны – разные люди отличаются друг от друга восприятием цветовых сигналов головным мозгом. Для нас же самым наглядным примером видимого спектра в природе является радуга.

Полный видимый спектр на шкале излучений различных длин волн выглядит так:

Белый свет является смешением всех (или нескольких) цветов спектра в определенной пропорции. Если луч белого света пропустить через стеклянную призму, то он разложится на спектр (явление дисперсии света).

Различные цвета мы видим каждый день и не придаём значения тому, что это очень сложный процесс восприятия. Цвет предмета определяется спектральным составом света и спектральными характеристиками отражения и пропускания материалов.

Цвет – это объективная величина, которая может быть измерена и выражена конкретными параметрами. Для этого чаще всего используют колориметрическую систему координат цветности:

На рис. 3 представлено поле реальных цветов. На ограничивающей его кривой линии отмечены длины волн монохроматических излучений, воспринимаемых глазом – от 380 (фиолетовый цвет) до 700 (красный цвет) нм.

Средняя часть цветового поля – это область белых цветов. В ней проходит линия – кривая теплового излучения, то есть кривая координат цветности белого света.

Цветность белого света зависит от цветовой температуры – температуры чёрного тела, при которой оно испускает излучение того же цветового фона, что и рассматриваемое излучение. Цветовая температура измеряется в градусах Кельвина.

Цвет излучения тепловых источников света (ламп накаливания) очень точно соответствует данной кривой на графике.

На рис. 4 представлено наглядное сравнение источников света с различной цветовой температурой.

Многие ошибаются, полагая, что чем выше цветовая температура, тем свет «теплее», чем ниже – «холоднее». Ассоциация происходит с температурой тела и воздуха, когда при повышении температуры становится теплее.

В случае цветовой температуры света можно провести аналогию с цветом звёзд.

Цвет звезды зависит от температуры на поверхности: чем больше тепла звезда излучает, тем более голубой цвет она имеет, и наоборот, самые холодные звёзды по температуре на поверхности имеют оранжевый и красный цвет. Как видно из рис. 5, самые горячие небесные тела – голубые звёзды с температурой 30000 К, самые холодные звёзды – красные с температурой 3500 К, солнце в середине дня имеет температуру на поверхности 6000 К и желто-белый цвет.

2. Влияние цветовой температуры источников света на человека

В современном мире большая часть нашего активного времени суток проходит на рабочем месте, т.е. под воздействием искусственного освещения. Качество света и его достаточное количество – важная составляющая верного восприятия окружающего мира. Формы объектов, цвета, люди, предполагаемые опасности распознаются нами, если обеспечивается достаточные уровень освещенности, время воздействия света и его цветность. Наравне с визуальными эффектами, цветность влияет также и на другие сферы жизни человека.

С конца 20-го века было проведено большое количество исследований незрительного воздействия света на организм. Оказалось, что в глазах человека имеются не только известные рецепторы – колбочки и палочки, воспроизводящие изображения предметов, но и фоторецепторы, воспринимающие свет без образования изображения – меланопсин. Эти рецепторы отвечают за выработку гормона мелатонина, кортизола, регулируя циркадные ритмы человека.

Циркадные ритмы – это внутренние фундаментальные биологические циклы организма с периодом 24 часа, такие как сон, температура тела, пищеварение. Циркадные ритмы влияют на выработку гормона «сна» – мелатонина, производят и выравнивают определенные физиологические реакции в зависимости от уровня освещенности и цветовой температуры.

Гормон мелатонин отвечает за отдых и расслабление организма и работает в партнерстве с другими гормонами (кортизол, серотонин, допамин). В течение дня кортизол обеспечивает бодрость и стрессовую реакцию организма, серотонин контролирует импульс и углеводную потребность, а допамин обеспечивает хорошее настроение, удовольствие, бдительность и координацию.

Высокий уровень мелатонина является причиной сонливости, но он может быть урегулирован воздействием на другие гормоны. Т.к. в течение рабочего дня регулировать уровень естественного освещения сложно, то оказывать влияние на эти четыре гормона, следовательно, и на циркадные ритмы, можно благодаря правильному выбору цветовой температуры источников искусственного освещения.

Воздействие на циркадные ритмы человека происходит за счет изменения уровня освещенности и цветовой температуры в определенные фазы суток. Например, синяя спектральная составляющая подавляет мелатонин и активизирует кортизол, что подходит для середины дня, обеспечивая высокую работоспособность человека, умственную и физическую активность. Излучения в желтом спектре подходят для утра и вечера, когда организм расслабляется и восполняет жизненные силы. Таким образом, изменяя цветовую температуру можно напрямую влиять на самочувствие человека, его настроение и работоспособность в течении дня, не нарушая жизненных циклов.

3. Практическое применение различной цветовой температуры в искусственном освещении

В настоящее время стало возможным применить на практике знания, что освещение в теплом спектре активизирует гормоны отдыха и действует расслабляюще на организм, освещение в нейтрально белом цвете обеспечивает комфортное выполнение текущих задач, а освещение в холодном спектре способствует умственной активности.

Для этого можно обеспечить биологически и эмоционально эффективное освещение двумя способами:

  1. Первый способ – это эффективное распределение освещения с различной цветовой температурой по времени и зонам:

Например, для стандартного рабочего времени подходит цветовая температура источников света равная 4000 К.

Для совещаний и важных переговоров необходима цветовая температура в 5000 К. За счёт более холодной цветовой температуры активизируется выработка гормона кортизола, что приводит к улучшению мозговой деятельности и концентрации.

Но в течение рабочего дня человеку необходим ещё и отдых для восстановления сил. Для этой цели в помещениях отдыха обеспечивают цветовую температуру источников света 3000 К.

  1. Второй способ – это обеспечение повторения суточного солнечного цикла с помощью источников света.

В основе данного метода лежит зависимость естественного солнечного цикла от цветовой температуры излучения и зависимость человека от солнечного цикла. Если понаблюдать за солнцем в течение дня, то можно увидеть следующую картину:

Как известно, человек ориентируется во времени по естественному освещению (смена дня и ночи), и что свет имеет влияние на человеческие биоритмы.

Утром, при восходе солнца (при теплой цветовой температуре) начинает снижаться выработка мелатонина, и организм пробуждается. Днём (при переходе от нейтральной цветовой температуры к холодной) при выработке кортизола повышается работоспособность. Вечером (при тёплой цветовой температуре) выработка кортизола уменьшается, мелатонина – увеличивается, организм входит в состояние покоя и готовится ко сну. Сохранить гармоничный для организма человека цикл цветовой температуры в искусственном освещении можно, организовав запрограммированное изменение цветовой температуры источников света.

Таблица 2. Зависимость организма от цветовой температуры источников света

Цветовая температура

Что происходит

Эффект

2700 – 3000 К, тёплая

Выработка гормона мелатонина, снижение выработки гормона кортизола

Утром – пробуждение, днём – отдых, расслабление, вечером – подготовка ко сну

4000 – 5000 К, нейтральная

Выработка гормона кортизола, снижение выработки гормона мелатонина

Основное рабочее время – увеличение концентрации

5000 – 6500 К, холодная

Выработка гормона кортизола

Пик активности мозга, концентрации, внимания и продуктивности

Таким образом, обеспечив один из подходов управления освещением на рабочем месте, можно грамотно положительно влиять на самочувствие и продуктивность сотрудников.

4. Торговое освещение

Где ещё можно наблюдать влияние цветовой температуры источников света на человека? В магазине. Да, это влияние не меняет настроения покупателя, но помогает сделать выбор. При правильном освещении булочки будут выглядеть вкуснее, а рыба и мясо – свежее.

В настоящее время вопрос, какой товар и в каком магазине выбрать, возникает каждый день. Современного потребителя, т.е. каждого из нас, окружает множество магазинов, конкурирующих между собой, но мы всегда пойдём в тот, где товар лучше. А товар лучше там, где его правильно презентуют.

В чём состоит взаимосвязь презентации товара и спектральных характеристик света?

Для торгового освещения важным требованием является качественная передача визуальной информации о товаре потребителю, что можно обеспечить с помощью качественного освещения. За это отвечают такие параметры как высокий уровень освещенности, высокий индекс цветопередачи, правильно подобранная цветовая температура источника и использование специальных спектров.

Различные группы товаров требуют различного освещения: существуют специальные спектры излучения источников, подчеркивающие натуральные оттенки предметов.

К примеру, мясо подсвечивают спектром со смещением в красный цвет, чтобы оно выглядело аппетитно.

Замороженные продукты и рыбу подсвечивают светом с холодной цветовой температурой (5000-6500 К), что подчеркивает свежесть, блеск и охлажденность.

Хлебобулочные изделия подсвечивают теплым светом (2700-3000 К). Как правило, хлеб выложен на натуральных материалах теплых оттенков (дереве), что усиливает гармоничный вид.

Фрукты и овощи освещают направленным светом с высокой цветопередачей, чтобы товар выглядел ярким, свежим и привлекательным.

В табл. 3 приведены дополнительные виды товаров, которые также можно выгодно подчеркнуть:

Таблица 3. Виды товарного ассортимента и необходимые им цветовая температура и смещение спектра

Товарный ассортимент

Цветовая температура, К;

Смещение спектра в цвет

Свет и цвет. Природа цвета и его физические основы

Ежедневно человек сталкивается с множеством факторов внешней среды, воздействующих на него. Одним из таких факторов, оказывающих сильное влияние, является цвет. Известно, что цвет может быть виден человеком лишь при свете, в темноте мы не видим никаких цветов. Световые волны воспринимаются человеческим глазом. Мы видим предметы потому, что они отражают свет и потому, что наш глаз способен воспринять эти отраженные лучи. Лучи солнечного или электрического света – световые волны в зрительном аппарате человека преобразуется в ощущение. Это преобразование происходит в три этапа: физический, физиологический, психологический.

Физический – излучение света; физиологический – воздействие цвета на глаз и преобразование его в нервные импульсы, идущие в мозг человека; психологический – восприятие цвета.

Физический этап формирования зрительного восприятия заключается в преобразовании энергии видимого излучения различными средами в энергию измененного потока излучения и изучается физикой.

Читайте также:  Фото дизайна гостиной 20 кв. м

Видимое излучение называют светом. Свет – видимая часть электромагнитного спектра, это частный случай электромагнитного излучения. Физики шутят, что свет – самое темное место в физике. Свет имеет двойственную природу: при распространении он ведет себя как волна, а при поглощении и излучении – как поток частиц. Итак, свет принадлежит пространству, а цвет – предмету. Цвет – это ощущение, которое возникает в органе зрения человека при воздействии на него света [25, с. 167].

В цветоведении принято рассматривать свет как электромагнитное волновое движение. В области видимого излучения каждой длине волны соответствует ощущение какого-либо цвета.

В спектре белого солнечного света различают семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Глаз среднего наблюдателя способен различить в спектре белого света около 120 цветов. Для удобства обозначения цветов принято деление спектра оптического излучения на три зоны:

– длинноволновую – от красного до оранжевого;

– средневолновую – от оранжевого до голубого;

– коротковолновую – от голубого до фиолетового.

Это деление оправдывается качественными различиями между цветами, входящими в различные области спектра. Каждый цвет спектра характеризуется своей длиной волны (таблица 1), т.е. он может быть точно задан длиной волны или частотой колебаний. Самые короткие волны – фиолетовые, самые длинные – красные. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн зрительным аппаратом человека.

Глаз способен воспринимать волны длиной от 400 до 700 нанометров (нанометр – одна миллиардная метра, единица измерения длины световых волн).

Таблица 1. Соответствие диапазонов длин волн ощущениям цветов

Название цветаГраницы диапазонов в нм
красный700-620
оранжевый620-580
желтый580-565
зелёный565-510
голубой510-480
синий480-450
фиолетовый450-400

С двух сторон от видимой части спектра находятся ультрафиолетовые и инфракрасные области, которые не воспринимаются человеческим глазом, но могут улавливаться специальным оборудованием (таблица 2). С помощью инфракрасного излучения работают камеры ночного видения, а ультрафиолетовое излучение хоть и невидимо человеческому глазу, но может нанести зрению значительный вред. Скорость распространения всех видов волн электромагнитных колебаний равна приближенно 300 000 км/с.

Таблица 2. Разновидности электромагнитных излучений

Рентгеновские лучиУльтрафиолетовый светВидимый спектрИнфракрасный светРадиоволны

Световые волны попадают на сетчатку глаза, где воспринимаются светочувствительными рецепторами, передающими сигналы в мозг, и уже там складывается ощущение цвета. Это ощущение зависит от длины волн и интенсивности излучения. А все предметы, которые нас окружают, могут или излучать свет (цвет), или отражать или пропускать падающий на них свет частично или полностью.

Например, если трава зеленая, это значит, что из всего диапазона волн она отражает в основном волны зеленой части спектра, а остальные поглощает. Когда мы говорим «эта чашка красная», то мы на самом деле имеем в виду, что она поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создается при ее освещении [14, с. 18]. Таким образом, красная чашка отражает в основном волны красной части спектра. Если мы говорим, что какой-либо объект имеет какой-либо цвет, это значит, что на самом деле этот объект (или его поверхность) имеет свойство отражать волны определенной длины, и отраженный свет воспринимается как цвет предмета. Если предмет полностью задерживает падающий свет, он будет казаться нам черным, а если отражает все падающие лучи – белым. Правда, последнее утверждение будет верным лишь в том случае, если свет будет белым, неокрашенным. Если же свет приобретает какой-либо оттенок, то и отражающая поверхность будет иметь такой же оттенок. Это можно наблюдать на закате солнца, которое окрашивает все вокруг багряными тонами, или в сумеречный зимний вечер, когда снег кажется синим. Эксперимент с использованием окрашенного цвета довольно любопытно описывает И. Иттен в своей книге «Искусство цвета» [15, с. 83].

Каким образом зрительный аппарат распознает эти волны, до настоящего времени еще полностью не известно. Мы знаем только то, что различные цвета возникают в результате количественных различий светочувствительности.

В данном контексте логично было бы напомнить еще одно определение цвета. Цвет – это различное число колебаний световых волн данного источника света, воспринимаемых нашим глазом в виде определенных ощущений, которые мы называем цветовыми [9, с. 6].

Ощущение цвета создается при условии преобладания в цвете волн определенной длины. Но если интенсивность всех волн одинаковая, то цвет воспринимается как белый или серый. Не излучающий волн предмет воспринимается как черный. В связи с этим все зрительные ощущения цвета разделяются на две группы: хроматические и ахроматические.

Ахроматическими называют белый, черный цвета и все серые цвета. В их спектр входят лучи всех длин волн в равной степени. Если же возникает преобладание какой-то одной длины волны, то такой цвет становится хроматическим. К хроматическим цветам относятся все спектральные и другие природные цвета.

2.2. Основные характеристики цвета

Для однозначности определения (спецификации) цвета часто используется система психофизических характеристик. К ним относятся следующие характеристики:

Цветовой тон – качество цвета, позволяющее дать ему название (например, красный, синий и т.д.). Интересно, что нетренированный глаз при ярком дневном освещении различает до 180 цветовых тонов, а развитый человеческий глаз способен различать около 360 оттенков цвета. Ахроматические цвета не имеют цветового тона.

Светлота – это степень отличия данного цвета от черного. В спектральных цветах самым светлым является желтый цвет, самым темным – фиолетовый. В пределах одного цветового тона степень светлоты зависит от применения белого. Светлота – степень, присущая как хроматическим, так и ахроматическим цветам. Оттенки одного цвета различной светлоты называют монохромными.

Насыщенность – это степень отличия хроматического цвета от равного по светлоте ахроматического. Так, если чистый спектральный цвет, например красный, принять за 100%, то при смешении 70% красного и 30% белого насыщенность полученной смеси будет равна 70%. От насыщенности зависит степень восприятия цвета.

Наиболее насыщены цвета спектра, причем самый насыщенный из них фиолетовый, а менее всего насыщен желтый.

Ахроматические цвета можно назвать цветами нулевой насыщенности.

Натренированный человеческий глаз может различить около 25 оттенков цвета по насыщенности, от 65 оттенков – по светлоте при высокой освещенности и до 20 – при пониженной.

Собственные и несобственные качества цвета. Цвет, тон, светлота, насыщенность называют собственнымикачествами цвета. Собственные качества – это те качества, которые ему объективно присущи.

Несобственные качества цветам объективно не присущи, а возникают вследствие эмоциональной реакции при их восприятии. Мы говорим, что цвета бывают теплые и холодные, легкие и тяжелые, глухие и звонкие, выступающие и отступающие, мягкие и жесткие. Эти характеристики важны для художника, так как посредством их усиливается выразительность и эмоциональный настрой произведения [22, с. 59].

Изменение объемности изображения зависит от насыщенности цвета (рис. 1) Активно насыщенные цвета делают изображение более объемным, нежели цвета слабо насыщенные или затемненные. Разбел и затемнение не только снижают активность цвета, но и ослабляют цветовые контрасты между пятнами. Монохромное изображение, так же как и насыщенное, способно активно передать объем, приближенный к ахроматическому варианту [22, с. 59].

Рис. 1. Изменение объемности изображения в зависимости от насыщенности цвета:

а – оптимально насыщенные цвета; б – слабонасыщенные (высветленные) цвета; в – ахроматический вариант; г – слабонасыщенные (затемненные) цвета; д – монохромное изображение объекта, рельефность, объем и эмоциональный настрой композиции. При использовании слабонасыщенных цветов (высветленных или затемненных) объем будет чувствоваться меньше, чем при использовании насыщенных.

Как сделать абажур для торшера своими руками: подборка идей и подробные инструкции по сборке

В каждом интерьере должна быть изюминка. Порой это антикварная статуэтка на комоде, картина на стене в стиле минимализм или эксклюзивная лампа на высокой подставке. Дизайнеры за декор ручной работы, как правило, берут немалые деньги. Но зачем тратить денежные средства, если можно и самостоятельно красиво оформить торшер. Согласны?

А как это сделать и что понадобится для работы – мы детально расскажем в этой статье. Поговорим о том, как сделать абажур из подручных материалов своими руками. Поделимся интересными фото с идеями оформления светильников. Поможем подобрать недорогие, а также безопасные материалы для вашего хенд-мейд торшера или лампы.

Стиль торшера и сочетание материалов

Абажур можно изготовить из огромного количества материалов. Удивительно, но факт – некоторые умельцы красиво оформляют свои осветительные приборы с помощью старых и ненужных вещей: газет, цветных оберток и даже коробок для яиц.

По своему оформлению торшер должен сочетаться с общим интерьером помещения. Рассмотрим подробнее, какие материалы подходят к каждому направлению в дизайне.

Стили и материалы:

  • Кантри – дерево, металл или комбинирование этих материалов.
  • Классика – различные натуральные ткани, а также бумага.
  • Прованс – ткани, которые декорированы лентами или вышивкой.
  • Экостиль – ветви деревьев, морские ракушки и другие натуральные материалы.
  • Хай-Тек, арт-деко – сочетание деталей из стекла и металла, камня.

Для Тиффани, китайской и японской стилистики характерен минимализм. Он должен просматриваться и в элементах декора. Для оформления абажура торшера можно выбрать деревянные элементы, ротанг или ткани с узорами восточной тематики.

Независимо от выбранного стиля, создавать самодельный абажур следует с учетом правил безопасности. В процессе работы осветительный прибор будет выделять тепло, поэтому между лампой и материалом должна быть дистанция, иначе возможно возгорание.

Правила создания безопасных самоделок

На любой фабрике, производящей торшеры, в штате сотрудников имеются технологи. При создании новой модели осветительного прибора такие специалисты производят расчет допустимого расстояния от материала абажура до лампочки. При этом обязательно учитывается степень термостойкости составных компонентов изделия, мощность ламп, а также другие факторы.

Нельзя абажуры из ткани, бумаги или другого воспламеняющегося материала эксплуатировать вместе с лампами накаливания. Поскольку они очень сильно нагреваются и могут послужить причиной возгорания абажура. Подробнее о типах лампочек мы говорили в этой статье.

Если выбор пал на LED и люминесцентные лампы, нужно обратить внимание на их цоколь. Он должен быть качественным. Оптимально подойдут варианты, изготовленные из металла или керамики. Такие лампочки обойдутся дороже обычных, но они обладают большим количеством преимуществ: длительный срок эксплуатации, практически не греются, не расходуют много электроэнергии, производят более ровный поток света и не мерцают.

Когда абажур для торшера будет полностью готовым и вся конструкция собрана, нужно включить светильник и понаблюдать за его работай некоторое время, чтобы проверить нагреваются ли стенки. Если материал на ощупь будет горячим, нужно поменять лампочку на менее мощный вариант.

Самодельные светильники могут эксплуатироваться в спальне, коридоре или гостиной. В помещениях с повышенной влажностью их не используют, так как есть риск возникновения короткого замыкания.

Придерживаясь этих правил можно создать красивую и безопасную напольную или настольную лампу, которая прослужит длительный срок.

Выбор конструкции и сборка абажура

Конструктивно абажуры можно разделить на каркасные и бескаркасные. Первый вариант более надежный и долговечный. Многим видам материалов легче придать нужную форму, когда есть дополнительные ребра жесткости.

Форма каркаса может быть любая – выбор зависит от стиля помещения и фантазии мастера. Главное, чтобы расстояние между лампой и отделкой абажура было выдержано.

Бескаркасные вариации имеют оригинальный внешний вид и более легкий вес. Однако такая модель подходит не для всех материалов.

На начальном этапе изготовления бескаркасного абажура нужно правильно подобрать место расположение лампочки. Чтобы во время сборки конструкции между самодельным плафоном и лампой осталось расстояние. Срок службы таких изделий намного меньше, чем у каркасных.

Изготовление бескаркасных абажуров

Перед созданием бескаркасного абажура нужно подготовить шаблон. Это может быть надувной мяч или воздушный шарик, который не жалко будет проткнуть. В качестве материала обшивки могут выступать вязанные салфетки, бельевая веревка, пряжа или нитки.

Алгоритм проведения работ:

  1. Шарик или мяч нужно хорошо накачать и зафиксировать в одном положении. Для этого можно использовать миску, подходящую по диаметру.
  2. Пропитать материал для абажура клеем ПВА.
  3. Уложить материал на шар. Обязательно нужно оставить отверстие под патрон (отверстие лучше обрамить пластиковым кольцом).
  4. Когда клей полностью высохнет, пробивают и вытягивают шарик. Форма абажура останется такой же.

В оставленное отверстие нужно аккуратно вставить патрон с лампой и прикрепить абажур на штангу. Штангу можно использовать со старого торшера или изготовить самостоятельно из различных материалов: деревянных черенков, штатива, металлических стержней и т. п.

Цвет готового плафона можно изменить с помощью аэрозольной краски. Хотя можно обойтись и без окрашивания – нити и бечевка в натуральном цвете тоже хорошо смотрятся.

Идеи для изготовления каркасных абажуров

Если есть старый каркас от торшера, то это уже половина дела сделана. Нужно лишь выбрать стиль оформления осветительного прибора и обновить конструкцию. Для этих целей можно использовать различные ткани и материалы.

Удачные варианты материалов для обшивки абажуров:

  • Ткань – отдавать предпочтение следует натуральным типам. Синтетические варианты быстро выцветают и могут от нагрева плавиться.
  • Веревка – хорошо подходит для обтягивания каркасных вариантов абажуров. Есть возможность выбрать толщину бечевки.
  • Пряжа – применима для классических торшеров. Обычно используют пряжу с толщиной нити 1-5 мм.
  • Ленты – могут применяться для декорирования готового плафона, а также для плетения по каркасу. Имеют большой ассортимент цветовых решений.
  • Деревянные элементы – для изготовления абажуров используют различные рейки, ветки и дощечки с перфорацией.
  • Бумага и картон – позволяют изготовить декоративные детали для украшения осветительных приборов. Это один из самых дешевых вариантов оформления. Такой абажур можно менять хоть каждый месяц.

Для создания абажура могут быть использованы даже самые неожиданные элементы, например, шестеренки от часов, пуговицы, кухонные терки, металлические банки и прочие подручные материалы.

В галерее ниже можно посмотреть фотоподборку интересных идей оформления:

Как сделать простую светодиодную лампу своими руками

Светодиодная лампа на 220 вольт позволяет сэкономить в 1,5–2 раза больше электроэнергии, чем лампа дневного света, и в 10 раз больше, чем лампа накаливания. К тому же при сборке из перегоревшего светильника расходы на изготовление такой лампы будут значительно ниже. Светодиодная лампа своими руками собирается достаточно просто, хотя работать с высоким напряжением вы можете только при наличии у вас соответствующей квалификации.

Преимущества самодельной лампы

В магазине можно найти множество видов ламп. Каждый тип имеет свой недостаток и преимущество. Лампы накаливания постепенно сдают свои позиции из-за высокого потребления энергии, низкой светоотдачи, несмотря на высокий индекс цветопередачи. По сравнению с ними люминесцентные источники света — настоящее чудо. Энергосберегающие лампы — их более современная модернизация, позволившая применять преимущества люминесцентного света в самых распространенных светильниках, с цоколями Е27, лишенная неприятного мерцания старых представителей этого семейства.

Но и у ламп дневного света есть недостатки. Они быстро выходят из строя из-за частого включения-выключения, к тому же содержащиеся в трубках пары ядовиты, а сама конструкция требует специальной утилизации. По сравнению с ними лампа на светодиодах (LED) — вторая революция в области освещения. Они ещё более экономичны, не требуют особой утилизации и работают в 5–10 раза дольше.

У светодиодных ламп есть один, но существенный недостаток — они самые дорогие. Чтобы снизить этот минус до минимума или обернуть его в плюс, потребуется соорудить её из светодиодной ленты своими руками. При этом стоимость источника света становится ниже, чем у люминесцентных аналогов.

Читайте также:  Дизайнеры рекомендуют одно, консультанты фен шуй — другое

Самодельная светодиодная лампа обладает рядом преимуществ:

  • срок службы устройства при правильной сборке составляет рекордные 100 000 часов;
  • по эффективности ватт/люмен они также превосходят все аналоги;
  • стоимость самодельной лампы не выше, чем у люминесцентной.

Разумеется, есть один недостаток — отсутствие гарантий на изделие, который должен компенсироваться точным соблюдением инструкций и мастерством электрика.

Материалы для сборки

Способов создания лампы своими руками великое множество. Наиболее распространены методы с использованием старого цоколя от перегоревшей люминесцентной лампы. Такой ресурс найдется у каждого в доме, поэтому проблем с поиском не будет. Помимо этого понадобятся:

  1. Цоколь от перегоревшего изделия.
  2. Непосредственно ЛЕД. Они продаются в виде светодиодных лент или отдельных светодиодов НК6. Каждый элемент имеет силу тока примерно 100–120 мА и напряжение около 3–3,3 Вольта.
  3. Потребуется диодный мост или выпрямительные диоды 1N4007.
  4. Нужен предохранитель, который можно найти в цоколе перегоревшей лампы.
  5. Конденсатор. Его емкость, напряжение и другие параметры выбираются в зависимости от электрической схемы для сборки и количества светодиодов в ней.
  6. В большинстве случаев потребуется каркас, на который будут крепиться светодиоды. Каркас можно сделать из пластика или подобного материала. Главное требование — не должен быть металлическим, токопроводящим и должен быть теплоустойчивым.
  7. Для надежного прикрепления светодиодов к каркасу потребуется суперклей или жидкие гвозди (последние предпочтительней).

Один–два элемента из вышеперечисленного списка могут не пригодиться при некоторых схемах, в других случаях могут, наоборот, добавляться новые звенья цепи (драйвера, электролиты). Поэтому список необходимых материалов нужно составлять в каждом конкретном случае индивидуально.

Собираем лампу из светодиодной ленты

Разберем пошагово создание источника света на 220 В из светодиодной ленты. Чтобы решиться использовать новшество на кухне, достаточно вспомнить, что собранные своими руками светодиодные лампы существенно выгодней люминесцентных аналогов. Они живут в 10 раз дольше, а потребляют в 2–3 раза меньше энергии при одинаковом уровне освещения.

  1. Для конструирования понадобятся две перегоревшие люминесцентные лампы длиной полметра и мощностью 13 ватт. Покупать новые смысла нет, лучше найти старые и неработающие, но не сломанные и без трещин.
  2. Далее идем в магазин и покупаем светодиодную ленту. Выбор большой, поэтому к приобретению подойдите ответственно. Желательно покупать ленты с чистым белым или естественным светом, он не изменяет оттенки окружающих предметов. В таких лентах светодиоды собраны в группы по 3 штуки. Напряжение одной группы 12 вольт, а мощность 14 ватт на метровую ленту.
  3. Затем нужно разобрать люминесцентные лампы на составные части. Осторожно! Не повредите провода, а также не разбейте трубку, иначе ядовитые пары вырвутся наружу и придется проводить уборку, как после разбитого ртутного градусника. Извлеченные внутренности не выбрасывайте, они пригодятся в дальнейшем. Ниже представлена схема светодиодной ленты, которую мы купили. В ней ЛЕД подключены параллельно по 3 штуки в группе. Обратите внимание, что такая схема нам не подходит.
  4. Поэтому нужно разрезать ленту на участки по 3 диода в каждом и достать дорогие и бесполезные преобразователи. Разрезать ленту удобней кусачками или большими и крепкими ножницами. После спаивания проволочек должна получиться схема, приведенная ниже. В итоге должно получиться 66 светодиодов или 22 группы по 3 ЛЕД в каждой, подключенные параллельно по всей длине. Расчеты просты. Так как нам понадобится преобразовать переменный ток в постоянный, то стандартное напряжение 220 Вольт в электрической сети нужно увеличить до 250. Необходимость «накинуть» напряжение связана с процессом выпрямления.
  5. Для выяснения количества секций светодиодов нужно разделить 250 Вольт на 12 Вольт (напряжение для одной группы по 3 штуки). В итоге получим 20,8(3), округлив в большую сторону, получаем 21 группу. Здесь желательно добавить ещё одну группу, поскольку общее количество светодиодов придется разделить на 2 лампы, а для этого нужно четное число. К тому же добавив ещё одну секцию, сделаем общую схему безопаснее.
  6. Нам понадобится выпрямитель постоянного тока, именно поэтому нельзя выбрасывать извлеченные внутренности люминесцентной лампы. Для этого достаем преобразователь, при помощи кусачек удаляем конденсатор из общей цепи. Сделать это достаточно просто, поскольку он расположен отдельно от диодов, то достаточно отломить плату. На схеме показано, что должно в итоге получиться, более подробно.
  7. Далее при помощи пайки и суперклея нужно собрать всю конструкцию. Даже не пытайтесь уместить все 22 секции в один светильник. Выше говорилось, что нужно специально найти 2 полуметровые лампы, поскольку разместить все светодиоды в одной просто невозможно. Также не нужно рассчитывать на самоклеющийся слой на обратной стороне ленты. Он не протянет долго, поэтому светодиоды нужно закрепить при помощи суперклея или жидких гвоздей.

Подведем итоги и выясним достоинства собранного изделия:

  • Количество света от получившихся светодиодных ламп в 1,5 раза больше, чем у люминесцентных аналогов.
  • Потребляемая мощность при этом намного меньше, чем у ламп дневного света.
  • Служить собранный источник света будет в 5–10 раз дольше.
  • Наконец, последнее преимущество — направленность света. Он не рассеивается и направлен строго вниз, благодаря чему используется у рабочего стола или на кухне.

Разумеется, испускаемый свет не отличается высокой яркостью, но главным достоинством является низкое энергопотребление лампы. Даже если включить и никогда не выключать её, то она за год съест всего 4 кВт энергии. При этом стоимость потребляемой электроэнергии в год сопоставима со стоимостью билета в городском автобусе. Поэтому такие источники света особенно эффективно использовать там, где требуется постоянная подсветка (коридор, улица, подсобка).

Собираем простую лампочку из светодиодов

Разберем другой способ создания светодиодного светильника. Люстра или настольная лампа нуждается в стандартном цоколе E14 или E27. Соответственно, схема и используемые диоды будут отличаться. Сейчас широко используются компактные люминесцентные лампы. Нам потребуется один перегоревший патрон, также изменим общий список материалов для сборки.

  • перегоревший цоколь E27;
  • драйвер RLD2-1;
  • светодиоды НК6;
  • кусок картона, но лучше — пластика;
  • суперклей;
  • электрическая проводка;
  • а также ножницы, паяльник, плоскогубцы и другие инструменты.

Приступим к созданию самодельной лампы:

  1. Сначала нужно разобрать старый светильник. В люминесцентных компактных лампах цоколь присоединяется к пластинке с трубками при помощи защелок. Если найти места с защелками и поддеть их отверткой, то цоколь отсоединится достаточно просто. При разборке нужно быть осторожным, чтобы не повредить трубки. Если они лопнут, то наружу попадут ядовитые вещества, содержащиеся в них. При вскрытии следите, чтобы электропроводка, ведущая к цоколю, осталась цела. Также не выбрасывайте содержимое цоколя.
  2. Из верхней части с газоразрядными трубками нужно сделать пластинку, к которой будут крепиться светодиоды. Для этого отсоединяем трубки лампочки. В оставшейся пластинке находится 6 отверстий. Чтобы светодиоды надежно крепились в ней, нужно сделать пластмассовое или картонное «дно», которое также будет изолировать светодиоды. Использовать будем светодиоды НК6 (фото внизу). Их достоинство в том, что они многокристальные (по 6 кристаллов в диоде) с параллельным подключением. Из-за этого источник света получается достаточно ярким при минимальной мощности.
  3. В крышке делаем по 2 отверстия для каждого светодиода. Прокалывайте отверстия аккуратно и равномерно, чтобы их расположение и задуманная схема соответствовали друг другу. При использовании в качестве «дна» куска пластмассы светодиоды будут крепиться довольно прочно, но в случае применения куска картона понадобится склеить основание со светодиодами с помощью суперклея или жидких гвоздей.
  4. Так как лампочка будет применяться в сети с напряжением 220 вольт, то понадобится драйвер RLD2-1. К нему можно подсоединить 3 одноваттных диода. У нас же 6 светодиодов с мощностью 0,5 ватт каждый. Поэтому схема соединения будет состоять из двух последовательно соединенных частей, в каждой части располагается 3 параллельно подсоединенных светодиода. Вверху приведена схема, а в реальности вся конструкция выглядит так:
  5. Перед сборкой нужно изолировать драйвер и плату друг от друга при помощи кусочка картона или пластика. Это позволит избежать короткого замыкания в будущем. Беспокоиться о перегреве не стоит, лампа практически не нагревается.
  6. Осталось собрать конструкцию и проверить в деле.

Световой поток собранного светильника равняется 100–120 люменам. Благодаря чистому белому свету лампочка кажется существенно светлее. Этого хватит для освещения небольшого помещения (коридора, подсобки). Главным достоинством светодиодного источника света является низкое энергопотребление и мощность — всего 3 Ватта. Что в 10 раз меньше ламп накаливания и в 2–3 раза — люминесцентных. Работает она от обычного патрона с питанием 220 вольт.

Заключение

Значит, имея под руками неработающие линейные или компактные люминесцентные лампы и несколько элементов, приведенных выше в данной статье, можно создать своими руками светодиодную лампу, обладающую рядом преимуществ. Одно из основных — низкая стоимость по сравнению с лампами, которые можно приобрести в магазине. При сборке и монтаже требуется соблюдать меры безопасности, так как приходится работать с высоким напряжением, поэтому следует придерживаться последовательности монтажа по схеме. В итоге получите лампу, которая будет долго работать и радовать глаз.

Видео

Как выбрать люстру в зал: размеры, мощность, форма, лампочки и интерьер

  • Люстры
  • Гостиная
  • Свет
  • Гид по товарам
  • Советы дизайнеров

Люстра в гостиной ― это не только красивая конструкцию. Чтобы не терять время ― возьмите бумагу, ручку, вспомните высоту и площадь помещения, где будет красоваться новая люстра. Начнем с мат. части и перейдем к дизайну.

Размеры люстры: высота, глубина, ширина

Покупая люстру, вы столкнетесь с ее размерными характеристиками: высота, глубина, ширина (диаметр). В этих обозначениях есть нюансы. Например, некоторые производители обозначают максимальную и минимальную высоту люстры, а ширину называют диаметром.

  • Макс. высота светильника/люстры ― это расстояние от точки крепления на потолке до низа конструкции, т. е. с ножкой, цепью и т. д.;
  • Мин. высота люстры ― это высота конструкции без ножки, цепи и чащи крепления. Такой разброс по высоте говорит, что «ножка» люстры регулируется по высоте. Если же длина указана без шага, то, скорее всего, ножка не регулируется;

Максимальная и минимальная высота люстры

Ширина и диаметр люстры

  • Ширину люстры часто обозначают диаметром;
  • С глубиной люстры тоже существуют нюансы. Например, ширина и глубина симметричной люстры равны, а вот асимметричной ― различны.

Высота люстры и высота потолков

Чтобы определить допустимую высоту люстры для вашей гостиной, ориентируйтесь на макс. высоту люстры. Помните, что длину цепи можно отрегулировать, а вот стационарную ножку меньше сделать нельзя. Поэтому размеры проверяйте дважды.

После подвешивания люстры оставшаяся высота ― это расстояние от низа конструкции до пола.

Стандартно, 190 см от низа люстры до пола считаются удобными. Формула такая: высота потолка ― 190 см = максимальная длина люстры. Так, вы не ударитесь макушкой о люстру или случайно не собьете ее рукой.

Как рассчитать высоту люстры. Схема

Еще один способ вычислить допустимую длину люстры ― ориентироваться на высоту дверного проема, который составляет примерно 2 метра. Т. е. выбирать люстру не ниже верхней части дверного проема.

Но лучше не доверять формулам и стандартным величинам, а примерить люстру под себя, учитывая личные предпочтения, рост самого высокого члена семьи, площадь и высоту потолков и т. д.

ВАЖНО: Люстра не может быть одним источником света, дополняйте функциональные зоны бра, торшерами, акцентными светильниками и т. д.

190 см или высота дверного проема ― ровно столько свободной высоты потолка должно остаться после установки люстры.

Низкие потолки ― ниже 2,5 м

Стандартная высота потолков в жилых помещениях согласно требованиям СНИП должна быть не ниже 2,5 м. В случае если потолки 2,5 м или ниже (например, из-за неправильно рассчитанных навесных конструкций), то присмотритесь к потолочным многоламповым люстрам ― для большой гостиной. Или однолампомповым светильникам для маленького зала. Они крепятся без «ножки» и съедают всего лишь от 5 до 35 см высоты потолка.

ВАЖНО: Подбирайте свет в комнату под план расстановки мебели с учетом всех размеров. На схеме сразу будет видно с чем вы имеете дело и на какой сегмент люстр время тратить не стоит.

Потолочная люстра в маленькой гостиной с низким потолком

Высокие потолки ― больше 3 м

Для высоких потолков подойдут классические многоламповые люстры на ножке, от 60 см и выше. А также дизайнерские асимметричные конструкции.

ВАЖНО: помните, высокие потолки «съедают» свет, поэтому мощность лампочек увеличивается на 1,5 раза от рекомендуемой стандартной мощности. Про это ниже.

Дизайнерская ассиметричная люстра в большой гостиной с высоким потолком

Мощность люстры в гостиной и количество лампочек

Формула для расчета мощности люстры

Мощность люстры влияет на степень освещенности в комнате. Чтобы рассчитать комфортную степень освещенности в гостиной вам нужны две величины: площадь помещения, высоты потолка и необходимое кол-во Вт на квадратный метр (СНиП 23-05-95). Гостиная ― помещение многофункциональное, поэтому стандартная величина Вт на квадратный метр больше, чем в ванной или спальне ― 20 Вт ( единица мощности электрического тока) .

Мощность люстры = площадь комнаты * стандартная величина Вт на квадратный метр (в гостиной ― 20 Вт).

Высота потолка в этой формуле важна только тогда, когда потолки выше 3 метров. Т. к. высокие потолки съедают свет, получившуюся цифру нужно умножить на 1,5.

На практике это выглядит так: гостиная площадью 20 м2 и высотой потолка 3,5 м. Т. е. (20*20)*1,5=600 Вт ― понадобится, чтобы осветить гостиную, не создав темных углов.

Отсюда, становится понятно, что в эту конкретную гостиную подойдет люстра с 6 плафонами для ламп накаливания мощностью 100W, или 10 ламп накаливания по 60W. Либо комбинировать несколько осветительных приборов (люстру, торшер и т.д), чтобы в сумме они создавали 600 Вт.

ВАЖНО: Подбирайте мощность лампочек по возможностям люстры. Эта информация указана в характеристиках товара или известна консультанту.

Потолочная люстра в серой гостиной с натяжным потолком

Тип лампочек в люстре

Расчет количества ламп зависит еще от типа ламп: лампы накаливания, галогенные, люминесцентные энергосберегающие или светодиодные, LED лампы.

  • Так, галогенная лампа 40 Вт идентична обычной лампе накаливания в 60Вт. Т. е. галогенная лампа дает примерно в 1,5 раза больше света, чем лампа накаливания.

Отсюда значит, что в гостиной, понадобится мощность не 600 Вт, а 400 Вт.

  • Люминесцентная лампа дает примерно в пять раз больше света, чем лампа накаливания. Т. е. понадобиться не 600 Вт, а уже 120 Вт.

ВАЖНО: Помните, что материал абажура может съедать мощность света. Например, плафон из темного, светозадерживающего материала снижает степень освещенности. Поэтому первый раз подбирать лампочки под новую люстру лучше сразу в магазине.

Что касается люстр со светодиодными лампочками, то в сравнении с люминесцентными вариантами светодиоды на 50% экономичнее. А если использовать их вместо ламп накаливания, то можно снизить расходы на 95%.

Типы лампочек для люстр их характеристики и различия схема

Типы ламп между собой можно комбинировать. Например, для люстры из 3–4 рожков на натяжном потолке подойдут люминесцентные лампы (они не нагреваются) или светодиодные, для бра у стены галогенная и для торшера лампа накаливания.

ВАЖНО: При выборе ламп важно обращать внимание и на патроны и их материал. Лучше покупать универсальны ― Е27, Е14. Для остальных сложно подобрать лампочки на замену. Также материал должен переносить высокие температуры. Подойдёт термопластик или керамика.

Ссылка на основную публикацию